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We study a model of chemical oscillations in two identical compartments, coupled by a chemical signal
diffusing and degrading in the one-dimensional bulk medium between the compartments. The nonlin-
ear compartment-bulk diffusion model consists of a coupled system of ordinary and partial differential
equations. Previous numerical work on this system reveals the presence of two modes of synchronized
oscillations, in-phase and anti-phase, which arise from Hopf bifurcations of the unique steady state of the
system. The coincidence of the two Hopf bifurcations indicates a double Hopf bifurcation point. We use
center manifold and normal form theory to reduce the local dynamics of the model system to a system
of two amplitude equations, which determines the patterns of Hopf bifurcation and stability of the two
modes near the double Hopf point. In the case of bistability, the stable manifold of an unstable invariant
torus forms the boundary between the basins of attraction of the stable in-phase and anti-phase modes.
Numerical simulations support these predictions.
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1. Introduction

Communication is crucial for a group of individuals to accomplish cooperative activities such as syn-
chrony. In neuronal systems, synchrony between different regions of the brain, communicating through
synaptic connections, is thought to be the basis of many cognitive activities (Varela et al., 2001).
Between individual cells, there are numerous examples of synchrony, such as glycolytic oscillations
in yeast cells (De Monte et al., 2007), pulsatile secretion of insulin in pancreatic β cells (MacDonald
& Rorsman, 2006), and cell cycles in colonies of amoebae (Segota et al., 2014). Among a variety of
communication methods between cells such as synaptic connections or gap junctions, here we are inter-
ested in the case where individual cells secrete a signalling chemical into the extracellular space, or bulk
region, where it diffuses and is detected by other cells, which can result in the entire population of cells
switching collectively to a synchronized dynamical behaviour. This occurs, for example, in quorum
sensing (Chiang et al., 2011; Miller & Bassler, 2001; Müller et al., 2006; Müller & Uecker, 2013).

One biological phenomenon we are motivated by is the synchronized rhythmic secretion of gonado-
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tropin-releasing hormone (GnRH) from neuron cells in the hypothalamus region of the mammalian
brain. This periodic signal has been shown to be crucial in maintaining the normal reproductive activities
in rhesus monkeys (Knobil, 1974). Experiments have shown that some 800 to 2000 GnRH neurons are
scattered in a few areas of hypothalamus. In order to generate an overall rhythmic GnRH pattern,
synchronization in the secretory activities of the neurons is essential. A synchronization mechanism
was proposed by Li & Khadra (2008), where it was assumed the neurons are coupled through GnRH
secreted into the extracellular space. The predictions of this model were shown to be consistent with
in vivo experiments. However, this model assumed the extracellular space was continuously stirred so
that GnRH is diluted and averaged immediately. A more realistic model in the absence of stirring would
consider the diffusion of GnRH in the bulk region.

A chemical concentration in the space between biological cells can be modeled by a bulk diffusion
field, and the chemical reactions in the cells themselves modeled by systems of ordinary differential
equations (or integro-differential equations, etc.) evolving in spatially isolated compartments that are
coupled by a one or more partial differential equations for diffusion in the bulk. A well known applica-
tion of this type of model considers the triggering of aggregation of slime mold amoebae Dictyostelium
discoideum when the chemical cAMP is secreted by the amoebae into the bulk region, e.g. (Goldbeter,
1990). Bulk diffusion of signalling chemicals within the cytoplasm of a cell has also been considered,
e.g. (Busenberg & Mahaffy, 1985). In quorum sensing, coupling compartments with bulk diffusion
can have important theoretical effects (Müller et al., 2006), such as providing dissipation that allows
approximation methods to be used to determine long-term dynamics (Müller & Uecker, 2013). In
other applications of coupled compartment-bulk diffusion models, the compartments can instead cor-
respond to dynamically active membranes, such as in systems of membranes and chemicals within a
cell (Gomez-Marin et al., 2007), cell membranes and viruses (Chou & D’Orsogna, 2007), or chemically
active surfaces and catalysts (Shvartsman et al., 1999).

In recent work (Gou et al., 2015a), a coupled compartment-bulk diffusion model with a one-dimen-
sional domain was studied. Identical chemical oscillators in two compartments are coupled with a scalar
field that diffuses and degrades in the bulk region. Simulations show that the coupled compartment-bulk
system can have two different modes of synchronized oscillations, or synchrony: an in-phase (or syn-
chronous) mode, where the two compartments oscillate at identical frequencies with no phase differ-
ence between them, and an anti-phase (or asynchronous) mode, where the two compartments oscillate
at identical frequencies with a phase difference of half a period. Parameter studies using numerical
bifurcation and continuation methods on spatially discretized approximations of the system show that
the two modes of synchrony arise from Hopf bifurcations, and there are parameter regions where bista-
bility occurs, where both modes of synchrony exist and both are stable. These studies show there are
double Hopf (or Hopf-Hopf) points, parameter values where the Hopf bifurcations of the in-phase and
anti-phase modes coincide. At such points, the interaction of the in-phase and anti-phase synchronies
can be studied analytically, without spatial discretization.

Following from observations made in the parameter study of the spatially discretized system, in this
paper we analyze a double Hopf bifurcation in the continuum compartment-bulk system. The analysis
explains and predicts certain features of the parameter study of the system regarding the interaction of
in-phase and anti-phase modes. For example, in parameter regions of bistability near the double Hopf
point, there is an unstable invariant torus in the dynamics whose stable manifold forms a boundary in
phase space between the stable in-phase and anti-phase modes. We express the coupled compartment-
bulk system as an evolution equation in an infinite-dimensional space, and use center manifold theory
to reduce the evolution to a four-dimensional local invariant manifold in the infinite-dimensional space.
This latter evolution is further reduced to a normal form, which is then used to make predictions about
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the in-phase and anti-phase modes and their nonlinear interaction near the double Hopf bifurcation. In
the following section, we give the model system, that describes the two diffusively coupled cells. Then
in section 3 we find in parameter space the location of the double Hopf point, and calculate associated
eigenvalues and eigenvectors. In section 4 we describe the double Hopf bifurcation analysis and its
results, and describe tests of its predictions using AUTO and simulations. We conclude the paper with a
discussion.

2. The coupled compartment-bulk diffusion model

The model we consider describes chemical reactions in two spatially separated compartments, coupled
by the diffusion and degradation of a signalling chemical in the bulk medium between the compart-
ments. The compartments may be regarded as biological cells, or as dynamically active membbranes,
which can interact with a signalling chemical in the bulk. We take a one-dimensional bulk medium,
represented by a bounded interval whose endpoints represent the two compartments. The concentration
of the signalling chemical in the bulk is represented by a scalar field which satifies a linear partial differ-
ential equation (PDE) for diffusion and degradation, and interacts with the compartments through flux
boundary conditions. The chemical reactions in the compartments are represented by nonlinear systems
of ordinary differential equations (ODEs) for each compartment, thus the compartment-bulk model is a
coupled PDE-ODE system.

We represent the bulk region by the interval [−L,+L], where L > 0 is a constant. Let C(x, t) denote
the concentration of the signalling chemical in the bulk at location x in the interval, at time t. We model
the diffusion and degradation of the signalling chemical in the bulk with the linear PDE

(2.1)
∂C
∂ t

= D
∂ 2C
∂x2 − kC, −L < x <+L, t > 0,

where D > 0 and k > 0 are diffusion and degradation constants.
Two compartments are represented by the boundaries of the interval x =−L and x =+L. Let V−(t)

and V+(t) denote the concentration of the signalling chemical in the compartment at x = −L and at
x = +L, respectively. We assume the efflux of the signalling chemical from each compartment is pro-
portional to the difference between the concentration inside each compartment and the concentration
outside of it in the bulk, with the influence of each compartment on the bulk given by linear flux bound-
ary conditions

(2.2)
−D

∂C
∂x

(−L, t) = κ [V−(t)−C(−L, t)] ,

+D
∂C
∂x

(+L, t) = κ [V+(t)−C(+L, t)] ,

where κ is a positive flux constant. Thus, if the concentration V±(t) of the signalling chemical inside a
compartment is higher than the concentration C(±L, t) at the corresponding boundary of the bulk region,
there is a positive flux of the chemical out of the compartment, into the bulk.

Inside each compartment, at x =−L and at x =+L, the signalling chemical reacts with some inter-
mediate chemical product, whose concentrations are denoted W−(t) and W+(t), respectively. The reac-
tions are governed by ordinary differential equations

(2.3)

dV−
dt

= f (V−,W−)+β [C(−L, ·)−V−] ,

dW−
dt

= g(V−, W−),
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inside the compartment at x =−L, and

(2.4)

dV+

dt
= f (V+,W+)+β [C(+L, ·)−V+] ,

dW+

dt
= g(V+, W+),

inside the compartment at x = +L. The influence of the outside bulk concentration of the signalling
chemical on the reaction dynamics inside each compartment is described by the coupling terms
β [C(±L, ·)−V±], with a positive constant β that represents the coupling strength.

We take identical compartments, so κ and β are the same for each compartment, and the functions
f and g representing the reaction kinetics inside each compartment are the same. For specific kinetics,
we take the Sel’kov model, originally used to describe glycolysis

(2.5)
f (V, W ) =−V +αW +V 2W,

g(V, W ) = ε(µ−αW −V 2W ),

where ε , α and µ are positive constants. These kinetics have the property that when the compartments
are uncoupled (β = 0) there is a unique steady state V0 = µ , W0 = µ/(α +V 2

0 ). For some parameter
values this steady state is globally asymptotically stable, while for other parameter values the steady
state is unstable and there is a unique stable limit cycle.

Our model system is (2.1)–(2.5), which in more mathematical terms can be described as a pair
of identical conditional oscillators, coupled by bulk diffusion. The choice of Sel’kov kinetics is not
essential: qualitatively similar results for the model have been found using other kinetics (Gou & Ward,
2015). Since the cells are identical, the model system (2.1)–(2.5) has a reflection symmetry, under
spatial reflection of the bulk region x→−x and exchange of the compartments.

3. Linearized stability and numerical bifurcation results

In this section we study the eigenvalue problem that gives the linearized stability of the steady state
solution of the model system. From this we obtain parameter values that give Hopf points for two
types of marginally stable synchronized linear oscillations, called anti-phase (asynchronous) and in-
phase (synchronous) eigenvectors. In particular, we obtain parameter values for a double Hopf point,
where both the anti-phase and in-phase eigenvectors are marginally stable. We also describe results of
numerical studies of stability and bifurcation.

We find the steady state, or equilibrium, of the model system (2.1)–(2.5) as

(3.1) C(x, t) =Ce(x), V−(t) =V e, V+(t) =V e, W−(t) =W e, W+(t) =W e,

where

Ce(x) =Ce
0

cosh(Ω0x)
cosh(Ω0L)

, V e =
µ +βCe

0
1+β

, W e =
µ

1+(V e)2 ,

and

Ω0 =

√
k
D
, Ce

0 =
κµ

κ +DΩ0(1+β ) tanh(Ω0L)
.

We note that the steady state is even with respect to the reflection symmetry. Then defining deviations
from the steady state by

C(x, t) =Ce(x)+ c(x, t), V±(t) =V e + v±(t), W±(t) =W e +w±(t),



DOUBLE HOPF BIFURCATION IN A COUPLED COMPARTMENT-BULK MODEL 5 of 23

from (2.1)–(2.4) we obtain the corresponding differential equations for the deviations

(3.2)

∂c
∂ t

= D
∂ 2c
∂x2 − kc,

dv−
dt

= f (V e + v−,W e +w−)− f (V e,W e)+β [c(−L, ·)− v−] ,

dw−
dt

= g(V e + v−,W e +w−)−g(V e,W e),

dv+
dt

= f (V e + v+,W e +w+)− f (V e,W e)+β [c(+L, ·)− v+] ,

dw+

dt
= g(V e + v+,W e +w+)−g(V e,W e),

with boundary conditions

−D
∂c
∂x

(−L, ·) = κ [v−− c(−L, ·)] ,

+D
∂c
∂x

(+L, ·) = κ [v+− c(+L, ·)] ,
(3.3)

We linearize (3.2)–(3.3) about the origin (which now corresponds to the steady state) and obtain

(3.4)

∂c
∂ t

= D
∂ 2c
∂x2 − kc,

dv±
dt

= f e
V v±+ f e

W w±+β [c(±L, ·)− v±] ,

dw±
dt

= ge
V v±+ge

W w±,

with the same boundary conditions

(3.5) ±D
∂c
∂x

(±L, ·) = κ [v±− c(±L, ·)] ,

where f e
V , ge

V f e
W and ge

W are the partial derivatives of f and g, evaluated at the steady state (3.1).
To study the linearized stability of the steady state, we make the usual ansatz c(x, t) = eλ tη(x),

v± = eλ tϕ± and w± = eλ tψ± in (3.4)–(3.5), and obtain the eigenvalue problem

(3.6)

λη = Dη
′′− kη ,

λϕ± = f e
V ϕ±+ f e

W ψ±+β [η(±L)−ϕ±] ,

λψ± = ε[ge
V ϕ±+ge

W ψ±],

with boundary conditions

(3.7) ±Dη
′(±L) = κ [ϕ±−η(±L)] .

If Reλ < 0 for all eigenvalues λ , then the steady state is asymptotically stable. We seek parameter
values where the steady state is marginally stable: Reλ = 0 for finitely many eigenvalues, called critical
eigenvalues, and Reλ < 0 for all remaining eigenvalues. Near such parameter values, we expect the
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nonlinear system (3.2)–(3.3) will have bifurcations of solutions near the steady state. Because of the
oscillatory nature of the reaction kinetics, at parameter values where the steady state is marginally
stable, the critical eigenvalues are purely imaginary

λ = iω

and we expect Hopf bifurcations in the nonlinear system at the corresponding parameter values. We
call the parameter values corresponding to marginal stability with purely imaginary eigenvalues Hopf
points.

Due to the reflection symmetry of (3.6)–(3.7), the eigenvectors come in two types, odd, or “anti-
phase” (or “asynchronous”), with

η(−x) =−η(x), v− =−v+, w− =−w+,

and even, or “in-phase” (or “synchronous”), with

η(−x) = η(x), v− = v+, w− = w+,

Solving the eigenvalue problem for anti-phase eigenvectors, we have

η−(x) = η
0
1

sinh(Ωλ x)
sinh(Ωλ L)

for some constant η0
1 , where

Ωλ =

√
k+λ

D
,

using the principal branch of the square root so that Ωλ is analytic in Reλ > −k, and the boundary
condition at x =+L gives

[κ +DΩλ coth(Ωλ L)]η0
1 = κϕ−.

Therefore the ϕ− and ψ− components of an anti-phase eigenvector satisfy the homogeneous system of
linear equations

[ f e
V − p−(λ )−λ ]ϕ−+ f e

W ψ− = 0,
ge

V ϕ−+(ge
W −λ )ψ− = 0,

(3.8)

where

p−(λ ) =
DΩλ coth(Ωλ L)

κ +DΩλ coth(Ωλ L)
.

Taking the determinant of the coefficient matrix of (3.8) we obtain a transcendental equation for any
eigenvalue λ for anti-phase eigenvectors

(3.9) [ f e
V − p−(λ )−λ ](ge

W −λ )− f e
W ge

V = 0.

Similarly, for in-phase eigenvectors we have

η+(x) = η
0
+

cosh(Ωλ x)
cosh(Ωλ L)



DOUBLE HOPF BIFURCATION IN A COUPLED COMPARTMENT-BULK MODEL 7 of 23

and λ must satisfy

(3.10) [ f e
V − p+(λ )−λ ](ge

W −λ )− f e
W ge

V = 0,

where

p+(λ ) =
DΩλ tanh(Ωλ L)

κ +DΩλ tanh(Ωλ L)
.

To study instabilities of the steady state, we determine the number of roots λ of (3.9) and (3.10)
and their distribution in the complex λ -plane. In (Gou et al., 2015a), a winding number criterion is
numerically implemented. Also, the system is spatially discretized with finite differences and the path-
continuation and bifurcation program AUTO (Doedel et al., 1997) is used, with the convenient interface
provided by the dynamical systems software package XPPAUT (Ermentrout, 2002), to study different
types of instabilities and dynamical behavior.

The use of AUTO confirms, at least for spatially discretized approximations, that Hopf points indeed
correspond to Hopf bifurcations of nonlinear periodic in-phase and anti-phase modes of synchrony. The
linear stability of the nonlinear periodic modes is also studied with AUTO, see Gou et al. (2015a). We
note the computations show bistability in some parameter regions, where both modes of synchrony are
stable. It is also found that modes can lose stability as a conjugate pair of Floquet multipliers move out
of the unit circle in the complex plane, typically associated with a torus bifurcation. Furthermore, in
simulations of the system with initial conditions nearly corresponding to an anti-phase mode but with
parameters such that only the in-phase mode is stable, the solution rotates in phase space for some time
before it settles down to a stable in-phase mode. These observations lead us to suspect the existence of
unstable torus (or quasiperiodic, or modulated wave) solutions. All of these phenomena could be found
near a double Hopf point, parameter values where the marginal stability curves of Hopf points for the
in-phase and anti-phase modes intersect.

There appear to be infinitely many double Hopf points in parameter space, for example as L increases
without bound, but many of the intersections of the anti-phase and in-phase marginal stability curves
are close to degenerate. At any sufficiently nondegenerate double Hopf point, we can accurately find
numerical values for the parameters at the point, by solving the eigenvalue equations (3.9) and (3.10).
For example, we fix parameter values at

(3.11) µ = 2, α = 0.9, ε = 0.15, κ = 1, k = 1, L = 1,

then with β and D as free parameters, we use the mathematical software package Maple to solve (3.9)
for a purely imaginary eigenvalue

λ = iω1

to find a nmarginal stability curve of Hopf points in the βD-plane for anti-phase eigenvectors. Similarly,
we solve (3.10) with

λ = iω2

to obtain another marginal stability curve of Hopf points for in-phase eigenvectors. Figure 1 shows
marginal stability curves of Hopf points obtained by solving (3.9) and (3.10) with parameter values
(3.11). For (β ,D) values along the red dashed curve, the steady state is marginally stable to an anti-
phase eigenvector, while along the blue solid curve it is marginally stable to an in-phase eigenvector.
These curves intersect at double Hopf points, which can be found numerically by simultaneously solving
(3.9) and (3.10). We obtain, for the leftmost double Hopf point seen in Figure 1, parameter values

(3.12) β = 0.508394 D = 0.555509,
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FIG. 1. Marginal stability curves for parameter values (3.11). Both marginal stability curves consist of Hopf points for anti-phase
(red dashed curve) or in-phase (blue solid curve) eigenvectors. The two curves intersect at double Hopf points.

with

ω1 = 0.811618, ω2 = 0.794334.

We check, using spatially discretized finite-difference approximations of the eigenvalue problem (3.6)–
(3.7), for parameter values at the double Hopf point (3.11)–(3.12), that (allowing for small discretization
errors) there are four critical, purely imaginary simple eigenvalues λ = ±iω1,2, and all the remaining
eigenvalues have negative real parts bounded away from 0.

If parameters are varied continuously, the eigenvalues change continuously. Therefore, if parameters
are near the double Hopf point, there are four simple eigenvalues near ±iω1,2, near the imaginary axis,
which we still call critical eigenvalues, and the remaining eigenvalues still have negative real parts
bounded away from 0.

We conclude this section by introducing a vector notation, which makes the subsequent bifurcation
calculations more convenient. We let

(3.13) X(t) =


c(x, t)
v−(t)
w−(t)
v+(t)
w+(t)

 ,

where for each t, X(t) belongs to a real infinite-dimensional function space H consisting of vectors X(t)
whose components satisfy the boundary conditions (3.5). We define the linear differential operator M



DOUBLE HOPF BIFURCATION IN A COUPLED COMPARTMENT-BULK MODEL 9 of 23

by

(3.14) MX =


D ∂ 2c

∂x2 − kc
f e
V v−+ f e

W w−+β [c(−L, ·)− v−]
ge

V v−+ge
W w−

f e
V v++ f e

W w+β [c(+L, ·)− v+]
ge

V v++ge
W w+

 ,

for all X(t) belonging to H. Then the linearized system (3.4)–(3.5) can be written as

(3.15) Ẋ = MX ,

for X(t) belonging to H, where the dot denotes differentiation with respect to t. Setting X(t) = eλ tq,
where

q =


η(x)
ϕ−
ψ−
ϕ+

ψ+


belongs to H, the eigenvalue problem (3.6)–(3.7) is expressed as

(3.16) Mq = λq,

For complex eigenvalues λ , we seek the corresponding eigenvectors q in the complexification of H. In
particular, at the double Hopf point (3.11)–(3.12) we have

Mq1 = iω1q1, Mq2 = iω2q2.

The complex eigenvectors (up to multiplication by an arbitrary complex scalar) are

(3.17) q1 =


η0

1 sinh(Ω1x)/sinh(Ω1L)
−1

−ge
V/(iω1−ge

W )
1

ge
V/(iω1−ge

W )

 , q2 =


η0

2 cosh(Ω2x)/cosh(Ω2L)
1

ge
V/(iω2−ge

W )
1

ge
V/(iω2−ge

W )

 ,

where

Ω1 =

√
k+iω1

D , Ω2 =

√
k+iω2

D , η
0
1 = κ

κ+DΩ1 coth(Ω1L) , η
0
2 = κ

κ+DΩ2 coth(Ω2L) .

Generally, the critical eigenspace (or center subspace) T c is the real subspace consisting of the span of
the real and imaginary parts of the (generalized) eigenvectors corresponding to all eigenvalues λ with
Reλ = 0. In our specific case it is the four-dimensional subspace

T c = span{Req1, Imq1,Req2, Imq2}.

For later computational convenience we express the critical eigenspace in complex notation as

T c = {z1q1 + z̄1q1 + z2q2 + z̄2q2 : z1,z2 ∈ C}.

Since all eigenvalues other than the four critical ones±iω1,2 have negative real parts, the complementary
subspace to T c in H is T s, the infinite-dimensional stable subspace.



10 of 23 J. GOU, Y.X. LI, W. NAGATA

4. Double Hopf bifurcation

In the previous section, we show there are double Hopf points, i.e. parameter values where the critical
eigenvalues for the linearization of the model system are two pairs of purely imaginary eigenvalues
±iω1, ±iω2. In the nonlinear model system itself, for parameter values near the double Hopf point, we
expect bifurcations of nonlinear modes of synchronized oscillations that resemble the linear anti-phase
and in-phase eigenvectors. This is confirmed by a bifurcation analysis, which also tells us the stabilities
of the nonlinear anti-phase and in-phase modes, and how the modes interact near the double Hopf point.
Key to this analysis is the reduction of the infinite-dimensional model system near the steady state to a
four-dimensional normal form.

We extend the vector notation introduced in the previous section to the nonlinear problem, and write
the model system (2.1)–(2.5) as

(4.1) Ẋ = MX + 1
2! B(X ,X)+ 1

3!C(X ,X ,X),

for X(t) belonging to H, where X(t) is given by (3.13) and the linear differential operator M is given by
(3.14). The operators B and C are symmetric bilinear and trilinear forms, respectively, given by

B(Xa,Xb) =


0
b1
−εb1

b2
−εb2

 , C(Xa,Xb,Xc) =


0
c1
−εc1

c2
−εc2

 .

where

b1 = 2W eva
−vb
−+2V e(va

−wb
−+ vb

−wa
−), b2 = 2W eva

+vb
++2V e(va

+wb
++ vb

+wa
+),

c1 = 2va
−vb
−wc
−+2vb

−vc
−wa
−+2vc

−va
−wb
−, c2 = 2va

+vb
+wc

++2vb
+vc

+wa
++2vc

+va
+wb

+,

Then

1
2! B(X ,X) =


0

W ev2
−+V ev−w−

−ε(W ev2
−+V ev−w−)

W ev2
++V ev+w+

−ε(W ev2
++V ev+w+)

 , 1
3!C(X ,X ,X) =


0

v2
−w−

−εv2
−w−

v2
+w+

−εv2
+w+

 .

are the quadratic and cubic terms, respectively, of the model system.
At a double Hopf point, the linear operator M has the four critical eigenvalues ±iω1,2 on the imagi-

nary axis in the complex plane, and the remaining eigenvalues of M are in the left complex half-plane,
bounded away from the imaginary axis. In this situation, for parameter values near the double Hopf
point, the nonlinear evolution equation (4.1) possesses a four-dimensional invariant local center mani-
fold W c

loc in the function space H, that is tangent to the critical eigenspace T c at the double Hopf point.
Furthermore, all solutions of (4.1) near the steady state decay exponentially rapidly, as t increases, to
the local center manifold W c

loc. Therefore, the local long-term dynamics of the entire system (4.1) is
governed by a four-dimensional system of ordinary differential equations that describes the dynamics
restricted to W c

loc. In fact, only low-order terms in the Taylor series expansion of this system are required.
Finally, a standard procedure of introducing coordinate changes reduces the system of differential equa-
tions to a simpler but equivalent one, called a normal form. This normal form is easier to analyze, and
predicts the local dynamics of the entire infinite-dimensional system (4.1).
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In the Appendix, we give some details of the reduction of the evolution equation (4.1) to the normal
form. Our computations are analytical, assisted by the mathematical software package Maple. Near
a double Hopf point, the normal form is a four-dimensional system of ordinary differential equations,
written in complex notation as

ζ̇1 = λ1ζ1 +G2100ζ
2
1 ζ̄1 +G1011ζ1ζ2ζ̄2 +O(‖µ‖‖ζ‖3 +‖ζ‖5),

ζ̇2 = λ2ζ2 +H1110ζ1ζ̄1ζ2 +H0021ζ
2
2 ζ̄2 +O(‖µ‖‖ζ‖3 +‖ζ‖5),

(4.2)

whose solutions ζ1(t), ζ2(t) are complex numbers that, to leading order, represent the evolving ampli-
tudes and phases of the anti-phase and in-phase oscillatory modes in the nonlinear system (4.1). The
critical eigenvalues of the linearization M near the double Hopf point are λ1 and λ2, so at the double
Hopf point itself we have λ1 = iω1, λ2 = iω2. Near the double Hopf point, the real parts of the critical
eigenvalues µ j = Reλ j serve as unfolding parameters that usefully quantify small deviations from the
double Hopf point. The higher-order Taylor series terms in the expansions O(‖µ‖‖ζ‖3 +‖ζ‖5), where
µ = (µ1,µ2) and ζ = (ζ1, ζ̄1,ζ2, ζ̄2), are not explicitly needed for our work. The four coefficients G jklm
and H jklm of the cubic terms in the normal form are calculated with the help of Maple, for the double
Hopf point at parameter values (3.11)–(3.12), and we evaluate them to be

(4.3)
G2100 =−3.07849+ i0.00166, G1011 =−5.89627+ i2.80222,
H1110 =−6.00121− i0.14896, H0021 =−2.90063+ i1.38790.

The analysis of the normal form (4.2) is described in several textbooks on bifurcation theory. Here
we briefly summarize the relevant parts of the treatment in Kuznetsov (2004). If we take polar represen-
tations ζ1 = r1eiφ1 , ζ2 = r2eiφ2 , and truncate higher-order terms, then in polar coordinates (r1,r2,φ1,φ2)
the normal form (4.2) can be written as

(4.4)

ṙ1 = r1(µ1 + p11r2
1 + p12r2

2),

ṙ2 = r2(µ2 + p21r2
1 + p22r2

2),

φ̇1 = ω1,

φ̇2 = ω2,

where
p11 = ReG2100, p12 = ReG1011, p21 = ReH1110, p22 = ReH0021.

The truncated normal form (4.4) is an approximation of the normal form (4.2) due to missing higher-
order terms in the Taylor series expansions, but for coefficient values (4.3) the approximation is suffi-
ciently accurate to predict the existence and stability of bifurcating solutions. In fact, (4.4) is accurate
enough for quantitative comparisons with simulations near the double Hopf point.

We see in the truncated normal form (4.4) that the first pair of equations is independent of the second
pair and thus the bifurcations of (4.4) are completely determined by the two equations in r j, where r j
represent the amplitudes of the anti-phase and in-phase modes:

(4.5)
ṙ1 = r1(µ1 + p11r2

1 + p12r2
2),

ṙ2 = r2(µ2 + p21r2
1 + p22r2

2).

Since we have p11 = −3.07849 and p22 = −2.90063, the normal form falls into the “simple” case of
Kuznetsov (2004) (p. 359), where p11 p22 > 0 and no fifth-order terms are needed in the amplitude
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equations (4.5). Unlike the “difficult” case where p11 p22 < 0, our two-dimensional amplitude equations
(4.5) have neither periodic solutions nor codimension-one heteroclinic orbits. Thus the normal form
(4.2) is sufficient to predict all the local bifurcations of the model system (2.1)–(2.5) near the double
Hopf point at parameter values (3.11)–(3.12). We observe that the system (4.5) has a trivial equilibrium
E0 = (0,0) for all µ1,2. Moreover, there can be as many as three nontrivial equilibria. Equilibria on the
coordinate axes

E1 = (r1,0), r1 > 0; E2 = (0,r2), r2 > 0,

where

r1 =

√
µ1

−p11
; r2 =

√
µ2

−p22

exist if µ1 > 0, µ2 > 0, respectively. Another equilibrium

E3 = (r1,r2), r1 > 0, r2 > 0,

where

(4.6) r1 =

√
−µ1 +θ µ2

−p11(θδ −1)
, r2 =

√
δ µ1−µ2

−p22(θδ −1)
,

and

(4.7) θ =
p12

p22
= 2.03276, δ =

p21

p11
= 1.94940,

exists if both −µ1 +θ µ2 > 0 and δ µ1−µ2 > 0. The equilibria E1,2 bifurcate from the origin E0 at the
bifurcation lines

(4.8) H1 = {(µ1,µ2)| µ1 = 0}, H2 = {(µ1,µ2)| µ2 = 0},

and E3 bifurcates from E2 or E1 on the bifurcation lines

(4.9)
T1 = {(µ1,µ2)| µ1 = θ µ2, µ2 > 0},
T2 = {(µ1,µ2)| µ2 = δ µ1, µ1 > 0},

respectively. We plot the parametric portraits of (4.5) in Figure 2. In the left panel, the four lines H1, H2,
T1 and T2 divide the (µ1,µ2) parameter plane into six regions. In region I, the amplitude system (4.5) has
the unique equilibrium E0 and it is asymptotically stable. When entering region II (or VI) from region I,
the equilibrium E1 (or E2) bifurcates from E0 and is asymptotically stable, while E0 is unstable. When
entering region III (or V) from region II (or VI), another, unstable, equilibrium E2 (or E1) bifurcates
from E0 while E1 (or E2) remains asymptotically stable and E0 is unstable. Finally, in region IV, there
is bistability as the two equilibria E1 and E2 are both asymptotically stable. A fourth equilibrium E3
exists and is unstable, while E0 is unstable. Although E3 is unstable, it has an important effect on the
overall dynamics. The unstable manifold of E3 forms the boundary between the basins of attraction of
the two stable equilibria E1 and E2. Thus the eventual limiting state of a generic trajectory depends on
the location of its initial value relative to the unstable manifold of E3. For more details, including phase
portraits, see Kuznetsov (2004). If we fix other parameters and only change β or D near the double Hopf
point, the curves corresponding to H j, Tj in the (β ,D) plane are shown in the right panel of Figure 2.



DOUBLE HOPF BIFURCATION IN A COUPLED COMPARTMENT-BULK MODEL 13 of 23

I II

III

IV

V

VI

µ
2

µ
1

0.5 0.51 0.52
0.5

0.55

0.6

β

D

FIG. 2. Parametric portrait of the amplitude equations (4.5) in the (µ1,µ2) plane (left panel) and the corresponding portrait in the
(β ,D) plane (right panel). In the left panel, the magenta dashed line is T2 : µ2 = δ µ1 and the blue dashed line is T1 : µ1 = θ µ2.
In the right panel, the black curve corresponds to the µ1-axis H2 : µ2 = 0 in the (µ1,µ2) plane, the red curve corresponds to the
µ2-axis H1 : µ1 = 0, the magenta dashed curve corresponds to T2 and the blue dashed curve corresponds to T1.

The solid black curve corresponds to the µ1-axis H2, and the solid red curve corresponds to the µ2-axis
H1. The dashed curves are linear approximations of the curves corresponding to the Tj.

Restoring the angular variables to (4.5) to recover the truncated normal form (4.4), the equilibria of
the amplitude equations (4.5) receive different interpretations. The origin E0 is still an equilibrium at the
origin, but E1 and E2 are limit cycles, or isolated periodic solutions of (4.4), while E3 for (4.4) is a two-
dimensional invariant torus. Their stability properties remain the same. Thus the lines H j correspond to
Hopf bifurcations, and the lines Tj to torus (or Neimark-Sacker) bifurcations.

Because nondegeneracy conditions are satisfied in our case, restoring the higher-order terms to the
truncated normal form (4.4) to return to (4.2) changes the bifurcation results only subtly. The torus
bifurcation lines Tj become torus bifurcation curves T1 : µ1 = θ µ2 +O(µ2

2 ) and T2 : µ2 = δ µ1 +O(µ2
1 )

tangent at the origin to the lines (4.9), while solutions restricted to the invariant two-torus are slightly
changed, but the two-torus itself persists as a normally hyperbolic invariant manifold with the same
stability type.

Finally, transferring the bifurcation and stability results to the original model system (4.1), or equiv-
alently (2.1)–(2.5), is straightforward. The origin E0 corresponds to the steady state (3.1), E1 and E2
correspond to nonlinear oscillating anti-phase and in-phase modes, and E3 corresponds to an invariant
two-torus or modulated oscillations, while the stability types remain the same. Solutions on the invariant
two-torus are characterized by two frequencies, one near ω1 and the other near ω2.

To check our results we consider parameter paths near the double Hopf point in the (β ,D) plane
and plot corresponding bifurcation diagrams obtained by using AUTO on a spatially discretized finite-
difference approximation of the model system (2.1)–(2.5). In Figure 3, we consider a parameter path
where we fix D = 0.54 and increase β from 0.50 to 0.52. This parameter path is shown in green in
the inset panel of the figure. The starting point is to the left of the two Hopf bifurcation curves, and
as β increases the parameter path crosses the red (anti-phase) Hopf bifurcation curve, then the black
(in-phase) Hopf bifurcation curve, and finally the dashed blue torus bifurcation curve. In the main
part of Figure 3 we show the bifurcation diagram plotted by AUTO for the finite-difference approxima-
tion of the model system, where β is plotted along the horizontal axis, V− along the vertical. Moving
rightwards from the left edge of the diagram (β = 0.50), there is a Hopf bifurcation from the steady
state to asymptotically stable anti-phase oscillating modes (solid circles), then another Hopf bifurcation
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from the steady state to unstable in-phase oscillating modes (open circles). As β increases further, the
in-phase modes gain stability as the parameter values enter a region of bistability, with asymptotically
stable anti-phase and in-phase modes coexisting. AUTO indicates that when the in-phase modes gain
stability, a pair of complex conjugate Floquet multipliers of the in-phase modes cross inside the unit
circle in the complex plane, which is characteristic of a torus bifurcation. This is all qualitatively con-
sistent with the dynamics predicted by the parameter path in the (β ,D) plane crossing the bifurcation
curves obtained from the amplitude equations (4.5). Although both the amplitude equations (due to
truncation of higher-order terms) and the AUTO bifurcation computations (due to finite differences) are
approximations of the model system, the numerical values of the bifurcation points agree well, close to
the double Hopf point.

0.5 0.51 0.52
1.5

2

β

V
−

β

D

FIG. 3. Bifurcation diagram for the model system, with D = 0.54 fixed and β increasing from 0.50 to 0.52. The inset panel
shows the parameter path plotted in green in the (β ,D) plane, together with the bifurcation curves obtained from the normal
form. As β increases (moving to the right on the green path), the parameter path crosses the solid red Hopf bifurcation curve for
anti-phase modes, the solid black Hopf bifurcation curve for in-phase modes, and the dashed blue torus bifurcation curve. The
main panel shows the bifurcation diagram for the parameter path obtained using AUTO on a spatially discretized finite-difference
approximation of the model system, with β plotted on the horizontal axis, the v− component of the vector solution on the vertical
axis.

Similarly, in Figure 4 we consider a parameter path fixing β = 0.509 and incresing D from 0.5 to 0.6.
This parameter path is shown in green in the inset panel. As D increases, the parameter path crosses the
dashed blue torus bifurcation curve, the dashed magenta torus bifurcation curve, and the solid red Hopf
bifurcation curve. The main panel shows the bifurcation diagram obtained by AUTO. As D increases,
the in-phase mode remains near the steady state and changes stability from unstable to asymptotically
stable. The anti-phase mode starts asymptotically stable with a large amplitude. As D increases the
amplitude shrinks, the anti-phase mode becomes unstable, then it disappears in a Hopf bifurcation at
the steady state. Again the sequence of stability changes and bifurcations is as predicted by the normal
form analysis, and there is good agreement between the numerical values of the bifurcation points.

AUTO is able to detect stability changes of periodic solutions that correspond to torus bifurcations,
but is unable to continue along branches of invariant tori. To look for invariant tori where their existence
is predicted by the normal form analysis, we simulated directly the model system (2.1)–(2.5) with finite
differences in both space and time. Although the tori are unstable, if initial conditions are chosen close
enough to an invariant torus, the solution will stay close to a solution on the unstable torus for some time
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FIG. 4. Bifurcation diagram for the model system, with β = 0.509 fixed and D increasing from 0.50 to 0.60. The inset panel
shows the parameter path plotted in green in the (β ,D) plane, together with the bifurcation curves obtained from the normal
form. As D increases (moving upwards on the green path), the parameter path crosses the dashed blue torus bifurcation curve, the
dashed magenta torus bifurcation curve, and the solid red Hopf bifurcation curve for anti-phase modes. The main panel shows the
bifurcation diagram for the parameter path obtained using AUTO on a spatially discretized finite-difference approximation of the
model system, with D plotted on the horizontal axis, the v− component of the vector solution on the vertical axis.

before the exponentially growing drift apart becomes noticeable. We take β = 0.509 and D = 0.55486,
which, according to the normal form, is in the parameter region between the two torus bifurcation
curves, where there is bistability due to both the anti-phase and in-phase modes being asymptotically
stable, and an unstable invariant torus. We choose the initial condition corresponding to

(4.10) X(0) = Re(r1q1 + r2q2),

recalling that the vector X(t) represents the deviation of variables from the steady state (3.1), and r1, r2
are the amplitudes (4.6)–(4.7) given by the equilibrium E3 of the amplitude equations that corresponds
to the invariant torus. Since the parameters are close to the double Hopf point, we reason that neglect of
higher-order terms in the amplitude equations and in the local center manifold should not give seriously
large errors, and therefore (4.10) represents an initial condition close to the unstable invariant torus. The
simulated results appear to validate this choice of initial condition. A plot of the time evolution of V−
component of the solution is shown in the left panel of Figure 5. For a reasonably long time the numer-
ical solution exhibits oscillations characterized by two periods which correspond to the two oscillating
frequencies ω1 and ω2 at the double Hopf point. The signal displays a phenomenon similar to that of
beats or amplitude modulation that occurs when two linear oscillations with nearly the same frequen-
cies are added, with a fast “carrier” frequency |ω1 +ω2| and a slow modulated “envelope” frequency
|ω1−ω2|. The power spectrum from an FFT analysis of the time series of the numerical solution is
shown in the right panel of Figure 5. The two peaks on the FFT plot indicate the two main frequency
components from the time series in the left panel, and the peak locations on the horizontal axis agree
with the values of ω1, ω2. This is consistent with the predictions of the normal form analysis.
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FIG. 5. The time evolution of the V− component of a simulated solution of the model system with initial condition (4.10) (left)
and its corresponding power spectrum obtained from FFT analysis (right). In the left panel, we can observe two periods from the
series. The shorter period corresponds to angular frequency |ω1 +ω2| and the longer period corresponds to angular frequency
|ω1−ω2|. The left inset panel shows the simulation results on a short time scale that more clearly resolves the rapid oscillations
corresponding to the shorter period. In the right panel, the power spectrum of the solution is plotted, where the horizontal axis is
angular frequency ω . Two peaks in the power spectrum at ω = 0.79 and ω = 0.81 are clearly visible. The inset in the right panel
shows more detail near ω = 0.8.

5. Discussion

We have studied a model of two identical compartments, represented by chemical oscillators with
Sel’kov kinetics, coupled by a chemical signal that diffuses and degrades in a one-dimensional bulk
medium. Previous numerical work on this model system of partial and ordinary differential equations
showed the presence of two modes of synchronized oscillations, in-phase and anti-phase, that arise
through Hopf bifurcations from the steady state. The pattern of Hopf bifurcations and stability of the
modes suggested the existence of an invariant torus in the dynamics. In this paper we use center man-
ifold and normal form theory to reduce the local dynamics of the model system to a normal form for a
double Hopf bifurcation, which predict configurations of Hopf bifurcations and stability of the in-phase
and anti-phase modes near the double Hopf point. The nomal form also shows the existence of an
unstable invariant torus in the dynamics of the model system, and the location of the torus and its stable
manifold can be approximated from the normal form near the double Hopf point. For the parameter
values we studied, but with no coupling (β = 0), the compartments (2.3) and (2.4) have only unique
globally asymptotically stable steady states. Thus the oscillators are conditional and coupling through
the bulk is necessary for the oscillations. The predictions of the normal form are checked with numeri-
cal simulations and continuation-bifurcation computations with the spatially discretized model. We note
that the reduction to the normal form is analytical, working with the continuum system itself with no
spatial discretization.

In the study of coupled oscillators, double Hopf bifurcations often appear in delay-coupled systems,
e.g. (Buono & Bélair, 2003; Shayer & Campbell, 2000). In our model, there is no explicit delay term,
but the communication between the two oscillators is through spatial diffusion of a signalling chemical
in the bulk medium. For spatially separated compartments, this can be a more realistic way to describe
the connections among individuals and at the same time diffusion serves effectively as a time delay,
reflecting the time needed for a chemical to change concentration at a distant location. In fact, diffu-
sion can be represented as a distributed delay through the variation of constants formula (Busenberg &
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Mahaffy, 1985), and this sometimes has practical advantages.
Since the two oscillators we considered are identical and the coupling is symmetric, from a sym-

metry point of view the existence of an anti-phase mode of synchrony is not surprising. Many other
works have noted the existence of a stable anti-phase synchrony in pairs of identical coupled oscillators,
see e.g. Sherman (1994) and references therein. Coupling by bulk diffusion, in a model similar to the
one studied in this paper, is considered by Gomez-Marin et al. (2007), and Gou & Ward (2015), where
anti-phase synchrony is found. The interaction of in-phase and anti-phase modes is often explored by
simulation, or with numerical continuation and bifurcation programs such as AUTO. At a double Hopf
bifurcation, it is possible to analytically determine the stability of both the in-phase and anti-phase
modes and their interactions near the organizing center of a double Hopf point. This organizing center
provides a useful point of reference for a more global study using numerical continuation and simula-
tion (Gou et al., 2015a). Also, the double Hopf normal form could provide starting values for numerical
torus continuations, and the stable manifolds of these tori would give global information on the basin
boundaries of competing attractors in bistable cases. Since the double Hopf bifurcation is structurally
stable, it is not necessary for the two coupled compartments to be exactly identical: a pair of sufficiently
similar compartments coupled nearly symmetrically in the bulk will have qualitatively the same dynam-
ics. Thus, nonsymmetric systems can have anti-phase and in-phase synchronies that interact similarly
to the synchronies in the model studied here.

We studied the simplest coupled system with two compartments. In systems with N coupled com-
partments, N > 2, there also can exist stable in-phase and anti-phase synchronies, possibly coexisting,
e.g. (Gonze et al., 2008; Merriam et al., 2005; Schroder et al., 2012). Anti-phase synchronies appear
between groupings of compartments, which may be imposed by assigning different coupling strengths,
or may emerge spontaneously when coupling is symmetric. A double Hopf bifurcation analysis could be
used to explore the interactions between such in-phase and anti-phase synchronies, if we restrict dynam-
ics to a symmetric invariant subspace. However, for an N-compartment system there exist other syn-
chronies. It would be interesting to investigate cases where a collection of N compartments are evenly
spaced in a finite or infinite one-dimensional domain, where we could expect synchronized oscillation
modes in addition in-phase and anti-phase. To fully determine all existing sychronies, together with
their stability and interactions, in a given N-compartment system would be a substantial undertaking
for moderately large values of N, but a good starting point would be to use a general algebraic formal-
ism (Golubitsky & Stewart, 2006) that depends only on coupling configurations, to first determine the
synchronies to investigate.

The current study has examined synchrony in a one-dimensional bulk region with two spatially
separated compartments. Another natural progression of this work is to extend the model into a two-
or three-dimensional bulk region. In a higher dimensional bulk region, with possible constraints such
as symmetric cell locations, a limited number of analytical tools could be used to obtain some insight
into spatio-temporal pattern formation. Moreover, the present model only considers linear coupling,
where the influence of the signalling chemical on the regulation mechanism is proportional to its con-
centration. Simple Hopf bifurcations of in-phase synchronies with nonlinear coupling are considered by
Gou et al. (2015b). A worthwhile study would be to consider a different coupling mechanisms such as
those suggested in experiments with Dictyostelium ameobae (Winfree, 2010) and compare how different
synchronies interact.
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A. Calculation of normal form coefficients

In this Appendix, we describe the calculations to evaluate the four cubic coefficients G jklm, H jklm in
the normal form (4.2) that governs the dynamics near a double Hopf point. To evaluate the cubic
coefficients, it is sufficient to take parameters at the double Hopf point, thus µ1 = µ2 = 0 and we have

ζ̇1 = iω1ζ1 +G2100ζ
2
1 ζ̄1 +G1011ζ1ζ2ζ̄2 +O(‖(ζ1, ζ̄1,ζ2, ζ̄2)‖5),

ζ̇2 = iω2ζ2 +H1110ζ1ζ̄1ζ2 +H0021ζ
2
2 ζ̄2 +O(‖(ζ1, ζ̄1,ζ2, ζ̄2)‖5).

(A.1)

At the double Hopf point, the nonlinear system (3.2)–(3.3), written as (4.1), is reduced to a system
on a four-dimensional center manifold that is tangent, in the infinite-dimensional function space H, to
the critical eigenspace T c. Since this center manifold reduction is standard and follows closely the
analogous procedure at a simple Hopf bifurcation described in detail for reaction-diffusion systems in
the textbook of Kuznetsov (2004), we give only a short description together with some details specific
to our system. This center manifold system is further reduced to the normal form (A.1).

We first construct a projection Pc of the space H, onto the critical eigenspace T c. This requires an
inner product, and two adjoint eigenvectors. For a pair of complex vectors

p =


ξ (x)
χ−
ϑ−
χ+

ϑ+

 , q =


η(x)
ϕ−
ψ−
ϕ+

ψ+

 ,

we define their inner product to be

〈p,q〉=
∫ +L

−L
ξ (x)η(x)dx+χ−ϕ−+ϑ−ψ−+χ+ϕ++ϑ+ψ+.

With respect to this inner product, the adjoint to the linear differential operator M is the linear differential
operator M∗, given by

M∗


ξ (x)
χ−
ϑ−
χ+

ϑ+

=


Dξ ′′(x)− k ξ (x)

fV χ−+ εgV ϑ−−β χ−+κ ξ (−L)
fW χ−+ εgW ϑ−

fV χ++ εgV ϑ+−β χ++κ ξ (+L)
fW χ++ εgW ϑ+

 ,

with adjoint boundary conditions

−Dξ (−L) = β χ−−κ ξ (−L),

+Dξ (+L) = β χ+−κ ξ (+L).

We solve for two adjoint eigenvectors

p j =


ξ j(x)
χ j,−
ϑ j,−
χ j,+
ϑ j,+

 ,
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j = 1, 2, satisfying
M∗p1 =−iω1 p1, M∗p2 =−iω2 p2,

with normalizations such that

(A.2) 〈p1,q1〉= 1, 〈p2,q2〉= 1,

where q1, q2 are the eigenvectors given in Section 3. We note that orthogonality conditions

〈p1,q2〉= 0, 〈p1,q1〉= 0, 〈p1,q2〉= 0
〈p2,q1〉= 0, 〈p2,q1〉= 0, 〈p2,q2〉= 0,

are automatically satisfied. We obtain

p1 = a0
1


ξ10 sinhΩ3x/sinhΩ3L

−1
fw/(iω1 + εgw)

1
− fw/(iω1 + εgw)

 , p2 = a0
2


ξ20 coshΩ4x/coshΩ4L

1
− fw/(iω2 + εgw)

1
− fw/(iω2 + εgw)

 ,

where the constants

a0
1 = 0.250508− i0.172379, a0

2 = 0.253847− i0.181974,

are chosen so that the normalization conditions (A.2) hold, and

Ω3 =

√
k−iω1

D , Ω4 =
√

i−iω2
D , ξ10 =

β

κ+DΩ3 cothΩ3L , ξ20 =
β

κ+DΩ4 tanhΩ4L .

We define the projection Pc, of H onto the critical eigenspace T c, by

PcX = z1q1 + z̄1q1 + z2q2 + z̄2q2,

for any X ∈ H, where z1, z2 are complex numbers given by the inner products

z1 = 〈p1,X〉, z2 = 〈p2,X〉.

Now we can use the projection Pc to split any vector X ∈ H into two parts

X = Xc +Y,

where the “center” part
Xc = PcX = z1q1 + z̄1q1 + z2q2 + z̄2q2

belongs to the four-dimensional critical eigenspace T c and the complementary part

Y = (I−Pc)X = X−〈p1,X〉q1−〈p1,X〉q1−〈p2,X〉q2−〈p2,X〉q2,

where I denotes the identity operator, belongs to the infinite-dimensional stable subspace T s. Corre-
spondingly, the system (4.1) splits into two parts

(A.3) Ẋc = MXc + 1
2 PcB(Xc +Y,Xc +Y )+ 1

6 PcC(Xc +Y,Xc +Y,Xc +Y ),
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(A.4) Ẏ = MY + 1
2 (I−Pc)B(Xc +Y,Xc +Y )+ 1

6 (I−Pc)C(Xc +Y,Xc +Y,Xc +Y ).

By center manifold theory, there is an invariant, exponentially attracting, four-dimensional local center
manifold in H that is tangent to the critical eigenspace T c, and the center manifold can be expanded in
a Taylor series as

(A.5) Y = Y (z1, z̄1,z2, z̄2) = ∑
j+k+l+m=2

1
j!k!l!m! w jklmz j

1z̄k
1zl

2z̄m
2 +O(‖(z1, z̄1,z2, z̄2)‖3).

Substituting the expansion (A.5) into (A.3)–(A.4) and using the invariance of the center manifold, we
collect terms of like powers and obtain nonhomogeneous linear boundary value problems for each of
the ten coefficient vectors w jklm at second order ( j+ k+ l +m = 2; j,k, l,m > 0),

(2iω1I−M)w2000 = (I−Pc)B(q1,q1),

−Mw1100 = (I−Pc)B(q1,q1),

(iω1I + iω2I−M)w1010 = (I−Pc)B(q1,q2),

(iω1I− iω2I−M)w1001 = (I−Pc)B(q1,q2),

etc.

Using the explicit expressions (3.17) for q1 and q2, we use matrix algebra and the method of undeter-
mined coefficients, assisted by the mathematical software package Maple, to solve for the w jklm that we
require. It is helpful to use symmetry to reduce the number of explicit solutions needed.

Substituting (A.5) into each of the components of (A.3), we obtain a four-dimensional ordinary
differential equation that gives the dynamics restricted to the invariant local center manifold,

ż1 = iω1z1 +g(z1, z̄1,z2, z̄2),

ż2 = iω2z2 +h(z1, z̄1,z2, z̄2).
(A.6)

Expanding in Taylor series

g(z1, z̄1,z2, z̄2) = ∑
j+k+l+m>2

g jklmz j
1z̄k

1zl
2z̄m

2 ,

h(z1, z̄1,z2, z̄2) = ∑
j+k+l+m>2

h jklmz j
1z̄k

1zl
2z̄m

2 ,

the ten quadratic coefficients of the center manifold system (A.6) are given by

g2000 =
1
2 〈p1,B(q1,q1)〉,

g1100 = 〈p1,B(q1,q1)〉,
g1010 = 〈p1,B(q1,q2)〉,
g1001 = 〈p1,B(q1,q2)〉,

etc.

Note that several of these coefficients vanish due to symmetry. We need explicitly only four of the cubic
coefficients of the centre manifold system (A.6),

g2100 = 〈p1,B(q1,w1100 +
1
2 B(q1,w2000)+

1
2C(q1,q1,q1)〉,

g1011 = 〈p1,B(q1,w0011)+B(q2,w1001)+B(q2,w1010)+C(q1,q2,q2)〉,
h1110 = 〈p2,B(q2,w1100)+B(q1,w0110)+B(q1,w1010)+C(q1,q1,q2)〉,
h0021 = 〈p2,B(q2,w0011)+

1
2 B(q2,w0020)+

1
2C(q2,q2,q2)〉.
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Finally, a near-identity coordinate transformation of the form

z1 = ζ1 +O(‖(ζ1, ζ̄1,ζ2, ζ̄2)‖2), z2 = ζ2 +O(‖(ζ1, ζ̄1,ζ2, ζ̄2)‖2),

takes the the center manifold system (A.6) into the normal form (A.1). The procedure to construct
the coordinate transformation is lengthy but standard, and is described in textbooks. For example, see
Kuznetsov (2004) for more details. In the end, there are formulas derived for the cubic coefficients in
the normal form (A.1), in terms of the quadratic and cubic coefficients of the center manifold system
(A.6): see equations (8.90)–(8.93) in Kuznetsov (2004). We use Maple to evaluate these coefficients
numerically, obtaining (4.3).
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