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Abstract

We formulate and analyze oscillatory dynamics associated with a model of dynamically active, but spa-
tially segregated, compartments that are coupled through a chemical signal that diffuses in the bulk
medium between the compartments. The coupling between each compartment and the bulk is due to
both feedback terms to the compartmental dynamics and flux boundary conditions at the interface be-
tween the compartment and the bulk. Our coupled model consists of dynamically active compartments
located at the two ends x = 0 and x = 2L of a 1-D bulk region of spatial extent 2L. The dynamics
in the two compartments is modeled by Sel’kov kinetics, and the signalling molecule between the two-
compartments is assumed to undergo both diffusion, with diffusivity D, and constant bulk degradation.
For the resulting PDE-ODE system, we construct a symmetric steady-state solution and analyze the
stability of this solution to either in-phase synchronous or anti-phase synchronous perturbations about
the midline x = L. The conditions for the onset of oscillatory dynamics, as obtained from a linearization
of the steady-state solution, are studied using a winding number approach. Global branches of either
in-phase or anti-phase periodic solutions, and their associated stability properties, are determined numer-
ically. For the case of a linear coupling between the compartments and the bulk, with coupling strength
β, a phase diagram, in the parameter space D versus β is constructed that shows the existence of a
rather wide parameter regime where stable in-phase synchronized oscillations can occur between the two
compartments. By using a Floquet-based approach, this analysis with linear coupling is then extended
to determine Hopf bifurcation thresholds for a periodic chain of evenly-spaced dynamically active units.
Finally, we consider one particular case of a nonlinear coupling between two active compartments and
the bulk. It is shown that stable in-phase and anti-phase synchronous oscillations also occur in certain
parameter regimes, but as isolated solution branches that are disconnected from the steady-state solution
branch.
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1 Introduction

Individuals in a large network communicate with each other to engage and coordinate their activities.
This happens at almost all levels of the living world ranging from a colony of unicellular amoebae to
highly sophisticated social networks of people. In many cases, this communication is carried out through
diffusive chemicals. Examples of such kind of systems range from the signalling of the amoebae Dic-
tyostelium discoideum through the release of cAMP into the medium [5] where it diffuses and acts on
each individual, to some endocrine neurons that secrete a hormone to the extracellular medium where
it influences the secretion of this hormone from a pool of such neurons [15, 12], and to girls sharing a
dormitory room leading to the synchronization of their menstrual cycles [16] presumably through the
secretion of a pheromone [20, 22] in the shared space. Further examples where this kind of signalling
occurs are related to quorum sensing behavior (cf. [3], [17], [18]). In many of these systems, the individ-
ual cells or localized units, can, under appropriate conditions, exhibit sustained temporal oscillations. In
this way, signalling through a diffusive chemical often can switch on and/or off the oscillations and to
synchronize the oscillations among all the individuals. The present paper is a theoretical investigation of
the mechanism through which this kind of synchronization occurs.

Biological rhythms are ubiquitous in living organisms, especially in mammals including human be-
ing. Some of the best known examples are the circadian periodicity observed in the blood level of
most hormones in mammals. Many hormones also exhibit rhythmicity with a period much shorter than
the circadian rhythm. These rhythms are referred to as the ultradian rhythms. The rhythmicity in
these hormones often plays a fundamental role in their physiological function. One of the best under-
stood examples, and the one that we are motivated by, is the pulsatile variation in the concentration of
gonadotropin-releasing hormone (GnRH) in the portal blood that circulates from the hypothalamus to
the pituitary gland. This periodic signal of about one pulse per hour has been shown to be crucial in
maintaining the normal reproductive activities in mammals [23]. It is now believed that 800-2000 GnRH
neurons are scattered in a few areas of the hypothalamus. In order to generate a coherent pulsatile GnRH
signal, such as is observed in the portal blood, synchronization of the secretory activities of the neurons
is essential. In [14] a synchronization mechanism was proposed, whereby neurons are coupled through
GnRH secreted into the extracellular space. Results from this model were shown to be consistent with
in vivo experiments. The key limitation of this model of [14], however, was that it was assumed that
extracellular space was continuously stirred so as to average out any spatial effects resulting from any
chemical secretions. A more realistic model, would be to couple the diffusion of GnRH in the extracellular
space to the localized secretory activity of individual neurons.

These past studies are the motivation for formulating and investigating a relatively new modeling
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paradigm by which spatially segregated dynamically active units, such as cells or localized signalling
compartments, communicate with each other through a signalling molecule that diffuses in the bulk
medium between the active units. In our model that couples dynamically active compartments through
a diffusive chemical signal, we will focus on the case where each compartment is a conditional oscillator.
This term is adopted here to refer to a dynamical system that stays at a stable steady state when isolated
from others, but is capable of generating sustained oscillations with some different choice of parameter
values. Dynamics of the signal in extracellular space, referred to as the bulk region, is described by a
simple diffusion equation, with diffusivity D, that undergoes linear bulk degradation. Each compartment
is capable of sensing the strength of the signal, through either a linear or nonlinear coupling with the
bulk, and responding to it by adjusting the rate of release of the signalling molecules into the bulk. The
release of the signal by each compartment into the bulk region is modeled as a flux boundary condition
at the interface between the compartment and the bulk.

In §2 we formulate such a 1-D model on the interval 0 < x < 2L, which consists of a PDE-ODE
system that couples diffusion in the bulk 0 < x < 2L, with constant diffusivity D, to compartmental
dynamics with Sel’kov kinetics on the boundaries x = 0 and x = 2L. The particular choice of Sel’kov
kinetics, as originally used in [21] for modeling glycolysis oscillations, is not essential since the qualitative
behavior of bulk-mediated oscillatory dynamics will also occur for other, more general, compartmental
kinetics. In particular, for a related PDE-ODE membrane-bulk system the numerical study of [6] has
revealed the possibility of stable synchronous dynamics under Fitzhugh-Nagumo reaction-kinetics in the
compartments. However, in this model of [6], the coupling of the membrane to the bulk is different than
for our Sel’kov model formulated in (2.1) below in that in [6] it was assumed that both the compartment
and bulk concentrations are identical at the two membranes.

For our compartment-bulk model with Sel’kov kinetics, in §3 we consider the case where there is a
linear coupling between the two compartments at x = 0 and x = 2L and the bulk, where β represents
the strength of this coupling. For this linearly coupled model, we construct a steady-state solution
that is symmetric about the midline x = L. In §3.1 we then derive a transcendental equation for
the eigenvalue parameter λ associated with the linearization of the coupled compartment-bulk model
around the symmetric steady-state solution. In our stability theory, we must allow for perturbations
that are either symmetric or anti-symmetric about the midline, which leads to the possibility of either
in-phase synchronous or anti-phase synchronous instabilities in the two compartments. To determine
unstable eigenvalues of the linearization, in Appendix A we use the winding number of complex analysis to
determine the number of roots in Re(λ) > 0 to the transcendental equation for the eigenvalue. This linear
stability analysis is supplemented by the numerical computation of global branches of periodic solutions,
either in-phase or anti-phase, that bifurcate from the symmetric steady-state solution branch. These
global solution branches, together with their stability properties, are determined using the numerical
bifurcation software package XPPAUT [4] after first spatially discretizing the PDE-ODE system into
a relatively large system of ODEs. In this way, a phase-diagram in the D versus β parameter space,
characterizing the region where stable in-phase and anti-phase oscillations between the two compartments
can occur is obtained. Our results show that there is a rather large parameter range where either stable in-
phase or anti-phase oscillations occur. Full numerical computations of the PDE-ODE system of coupled
compartmental-bulk dynamics, undertaken using a method-of-lines approach, are used to validate the
theory.

In §4, we extend the simple two-compartment case of §3 to allow for a periodic chain of evenly-spaced
dynamically active units that are linearly coupled to a bulk diffusion field. By using an approach based
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on Floquet theory, we analyze the linear stability problem to determine Hopf bifurcation thresholds
associated with the various possible modes of oscillation. Comparisons of predictions from the linear
stability theory with full numerical simulations are performed.

In §5 we illustrate oscillatory compartmental dynamics for a specific type of nonlinear coupling be-
tween the bulk and the two compartments, for which the steady-state solution is the same as that for the
uncoupled compartmental dynamics. For this model, no Hopf bifurcations can occur along the steady-
state solution branch. Nevertheless, we show using the numerical bifurcation software XPPAUT [4] that
this model can still generate compartment-bulk oscillations. More specifically, our numerical computa-
tions show, in contrast to the case of a linear coupling between the compartments and the bulk considered
in §3, that the branches of in-phase and anti-phase periodic solutions are disconnected and do not bifur-
cate off of the symmetric steady-state solution branch. Our global bifurcation diagram reveals that there
is a parameter range of bistability where either stable in-phase oscillations or stable anti-phase oscilla-
tions can co-exist with the stable symmetric steady-state solution branch. Although the coupled system
in §5 is only a mathematical model, and is not motivated by a specific biological context, the analysis
does indicate that the coupling of active compartments by bulk diffusion can lead to disconnected global
branches of periodic solutions having a saddle-node structure. This indicates that hysteretic behavior in
the compartment-bulk oscillations can be possible as parameters are varied. In §5.1 we study an extended
ODE compartmental dynamics model, closely related to the nonlinear coupled compartment-bulk model,
but where bulk diffusion is neglected. Finally, in §6 we outline a few potential extensions of the theory
to more biologically realistic systems.

Related recent investigations of oscillatory dynamics due to membrane-bulk coupling are that of [7],
[8], and [9]. In [7], a center manifold analysis was used to analyze the parameter space near a double Hopf
point, corresponding to the intersection of the Hopf boundaries for the in-phase and anti-phase modes.
This co-dimension-2 double Hopf point leads to the existence of an invariant torus in the dynamics. In
[8] a detailed linear stability theory was given for a general class of coupled membrane-bulk models with
only one active component on the membrane. For this class, a weakly nonlinear analysis, leading to
an amplitude equation, was derived to distinguish whether Hopf bifurcations from the steady-state are
subcritical or supercritical. Finally, in [9] oscillatory instabilities were analyzed for the coupled membrane-
bulk model of [6], which has slow-fast Fitzhugh-Nagumo compartment reaction-kinetics. As a result of
the analytical simplification resulting from the assumed slow-fast membrane kinetics, in [9] it was largely
possible to analyze the linear stability problem using asymptotic methods.

The present study differs from the [8] in that we focus on the case where there are, not one, but instead
two active components in each compartment, and where the reaction-kinetics have no slow-fast dynamics,
as was assumed in [9]. As such, we develop and illustrate a hybrid analytical-numerical approach to
analyze the linear stability problem and to compute global branches of periodic solutions. We also
examine oscillatory instabilities for the novel setting of a periodic chain of dynamically active components,
which has not been considered previously. Finally, we illustrate through a particular nonlinearly coupled
“toy” model, that periodic solution branches induced by membrane-bulk coupling can exhibit saddle-node
behavior, and do not necessarily arise from Hopf bifurcations of the steady-state problem.
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2 Formulation of the Coupled Compartment-Bulk Model

We begin by formulating a simple model that describes the diffusion and degradation of a signalling
particle in a 1-D spatial domain. The concentration/density of the particle is represented by C(x, t),
defined on the bulk x ∈ [0, 2L] at time t. Two identical compartments are introduced at the two
ends of the interval. These compartments can either be regarded as two cells or two dynamically active
membranes, which can interact with the diffusive signalling particle in the bulk. The dynamical process in
each compartment, be it biochemical reactions inside a cell or other chemical reactions on the membrane,
is described by a system of nonlinear ODEs. However, the dynamical process in each compartment is
modulated by the concentration of the diffusive particle near each boundary. Thus, the dynamics in the
compartment at the left end depends on C(0, t), while the one at the right end is modulated by C(2L, t).
The release of signalling particles from the compartments into the bulk is modeled as a flux boundary
condition at each of the two compartments. In the bulk, we model the diffusion process as

∂C

∂t
= DCxx − kC , 0 < x < 2L , t > 0,

−DCx(0, t) = κ(V0(t)− C(0, t)) , DCx(2L, t) = κ(V1(t)− C(2L, t)) .
(2.1a)

Here D > 0 and k > 0 are the constant diffusion and bulk degradation rates, respectively, κ > 0 measures
the strength (in unit of length per time) of chemical flux secreted by the cells, while Vi(t) (i = 0, 1) are
the concentrations of the particle in the two compartments. In our model, we assume the efflux of
particles out of each compartment is proportional to the difference between the concentration inside each
compartment and that outside of it in the bulk. Therefore, the influence of each compartment on the
diffusive particles is described by the linear flux boundary condition of (2.1a).

The dynamics governing the time evolution of the concentration Vi(t) and another variable Wi(t)
inside each compartment is described by the following system of nonlinear ODEs:

dVi

dt
= f(Vi,Wi) + βP (C(2Li, t), Vi(t)) ,

dWi

dt
= g(Vi,Wi) ; for i = 0, 1 . (2.1b)

For simplicity, we assume that the compartment kinetics f(V,W ) and g(V,W ), as well as the coupling
term βP (C(2Li, t), V (t)) to the bulk, are identical for the two compartments. We assume that this
system, when isolated (i.e. when β = 0), and given favourable choices of parameter values, is capable of
generating sustained oscillations of limit cycle type. In addition, we further assume that, when isolated,
the compartmental dynamics has a unique stable steady-state.

To illustrate the new behavior that can be induced by compartment-bulk coupling, we will use Sel’kov
model, for which the kinetics are

f(V,W ) = αW +WV 2 − V , g(V,W ) = ǫ
[

µ− (αW +WV 2)
]

, (2.1c)

where 0 < ǫ < 1 is a parameter. We remark that the qualitative conclusions derived in the present study
do not depend on the specific forms of the reaction kinetics, provided that limit cycle type oscillations in
the dynamics can occur. In our model, the influence of the concentration of particles near each boundary
on the compartment dynamics is described by the coupling term βP (C(2Li, t), V ), where β represents
the coupling strength. Two types of coupling will be considered. In §3 we consider a linear coupling
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term, while in §5 we consider a specific form of nonlinear coupling. In §4 we generalize (2.1) to consider
a periodic chain of evenly-spaced compartments with linear coupling.

For this Sel’kov model, when each compartment is isolated, i.e. when β = 0, there is a unique
steady state solution given by Ve0 = µ and We0 = µ/(α + µ2), which is stable. In other words, the two
compartments are “conditional oscillators” when decoupled from each other. Therefore, when oscillations
occur in the present study, they are caused by the coupling between the two compartments induced by
the diffusive signalling particles.

3 Linear Coupling Between the Compartments and the Bulk

We first consider (2.1) with a linear coupling term P (C(2Li, t), V ) where i = 0, 1. We specify that

P (C(2Li, t), V ) = C(2Li, t)− V (t) , i = 0, 1 . (3.1)

With this choice, all interactions between the compartments and the diffusive particles are linear.
We first determine a steady-state solution to (2.1), with (3.1), that is symmetric about the midline

x = L. To construct this steady-state solution we solve (2.1) on 0 < x < L, while imposing a no-flux
boundary condition for C at x = L. Since only the compartment at the left boundary x = 0 is considered,
we drop the subscripts for the compartmental variables V and W . We readily calculate that there is a
unique symmetric steady-state solution Ce(x), Ve, and We, given by

Ce(x) = C0
e

cosh(ω(L− x))

cosh(ωL)
, C0

e =
κµ

κ+Dω tanh(ωL)(1 + β)
, ω ≡

√

k/D ,

Ve =
µ

1 + β
+

βC0
e

1 + β
, We =

µ

α + V 2
e

.

(3.2)

The steady-state solution in the compartment for the coupled system differs from that of the uncoupled
problem, and reduces to Ve = Ve0 ≡ µ and We = We0 ≡ µ/(α + µ2) in the absence of coupling.

3.1 Linear Stability Analysis of the Steady State

To analyze the linear stability of the symmetric steady-state solution, we introduce the perturbation

C(x, t) = Ce(x) + eλtη(x) , V (t) = Ve + eλtϕ , W (t) = We + eλtφ , (3.3)

into (2.1). Upon linearizing the resulting system, we obtain the following eigenvalue problem for λ:

λη = Dηxx − kη , 0 < x < L ; −Dηx(0) = κ(ϕ− η0) , (3.4a)

λϕ = f e
V ϕ+ f e

Wφ+ β (P e
Cη0 + P e

V ϕ) , λφ = geV ϕ+ geWφ . (3.4b)

Here we have defined η0 ≡ η(0), f e
V ≡ fV (Ve,We), f

e
W ≡ fW (Ve,We), P

e
C ≡ PC(C

0
e , Ve), etc.

The formulation of the linear stability problem is complete after imposing a boundary condition for
η(x) on the midline x = L. We will consider two distinct choices. The choice η(L) = 0 corresponds
to an anti-phase synchronous perturbation, while the condition ηx(L) = 0 corresponds to an in-phase
synchronization of the two compartments. We will consider both possibilities in our analysis below.
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For either choice of the boundary condition, we can readily solve (3.4) to derive that λ must be a root
of the transcendental equation F(λ) = 0, where F(λ) is defined by

F(λ) ≡
1

p±(λ)
−

geW − λ

det(Je − λI)
, Je ≡

(

f e
V , f e

W

geV geW

)

. (3.5a)

Here Je is the Jacobian matrix of the uncoupled compartmental dynamics evaluated at the steady-state
(3.2) for the coupled system. In (3.5a), p±(λ) are defined by

p+(λ) ≡
βDΩλ tanh(ΩλL)

κ+DΩλ tanh(ΩλL)
, p−(λ) ≡

βDΩλ coth(ΩλL)

κ+DΩλ coth(ΩλL)
, Ωλ ≡

√

k + λ

D
, (3.5b)

where p+ corresponds to in-phase synchronous perturbations, while p− corresponds to anti-phase syn-
chronous perturbations. In (3.5b), we must specify the principal branch of the square root to ensure that
η(x) is analytic in Re(λ) > 0.

To classify any instabilities that can occur with compartment-bulk coupling we need to determine the
number of roots of (3.5a) and their distribution in the right-half of the complex λ-plane (i.e. Re(λ) > 0).
We will approach this problem in two ways. One method is to numerically implement a winding number
approach, as done below in Appendix A. The second method, which we discuss here, is to use the
bifurcation software XPPAUT[4]. Firstly, we spatially discretize (2.1) into a relatively large system of
ODEs, and then we use XPPAUT to path-follow solution branches that bifurcate off the steady-state
solution (3.2). In this way, in Fig. 2 we show two typical bifurcation diagrams with respect to the
diffusivity D and the coupling strength β, for fixed values of the other parameters as shown in the figure
caption. As seen from these plots, there are Hopf bifurcation points at which the steady-state solution loses
its stability to either in-phase or anti-phase oscillatory instabilities in the two compartments. Moreover,
in some regions of the (β,D) parameter space only either the in-phase or anti-phase mode is present. In
the left panel of Fig. 2, where we plot the bifurcation diagram for V versus D when β = 0.8, we observe
that the in-phase and anti-phase periodic solution branches change stability at D ≈ 0.25 and D ≈ 0.55,
respectively, which correspond to Torus bifurcation points. By tuning the parameter β, these bifurcation
points can occur at a common value of D, and correspond to the intersection of the black and magenta
curves in Fig. 1. For this co-dimension-2 case, such Torus bifurcations, leading to the existence of an
invariant Torus in the dynamics, were analyzed in detail using a center manifold approach in [7]. For
β = 0.8, we further observe from the left panel of Fig. 2 that both the in-phase and anti-phase oscillations
are stable on the range 0.25 < D < 0.55. A similar bifurcation diagram, but with fixed D = 0.4 and β a
parameter, is shown in the right panel of Fig. 2.

By varying the values of D and β, we can obtain a series of bifurcation diagrams, representing slices
through the (β,D) phase space. By amalgamating these slices, we generate the phase diagram in the
(β,D) parameter plane as shown in Fig. 1. We remark that the diffusivity D effectively represents the
length scale of this system. When D is small, effectively the distance between the two cells is large.
However, when D is large, effectively one can consider that the two cells are close together. Therefore,
changing D is equivalent to changing the distance between the two cells. Variations in the coupling
strength β determine the importance of the feedback in the compartment-bulk interactions.

The phase diagram in Fig. 1 shows the region of stability of the steady-state solution, and regions
where either in-phase or anti-phase oscillations, or both, can occur as the diffusivity D and the coupling
strength β are varied. From this plot, we observe that when D is relatively small, then as the coupling
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0.5

1

1.5

β

D

 

 

Anti−phase
In−phase

Figure 1: Phase diagram in the D versus β parameter plane, for the Sel’kov model (2.1) with linear
coupling (3.1) for both the in-phase and anti-phase modes. The parameters in (2.1) are µ = 2, α = 0.9,
ǫ = 0.15, and κ = k = L = 1. In-phase and anti-phase compartmental oscillations occur within loop
bounded by the blue solid and red-dashed curves, respectively. Above the black solid line, the in-phase
periodic solution is stable, while below the dashed magenta curve the anti-phase periodic solution is
stable. The horizontal and vertical slices at D = 0.4 and β = 0.8, respectively, through the phase
diagram are discussed in Fig. 2.

0 0.5 1

1.5

2

D

V

0.4 0.8 1.2
1

1.5

2

β

V

Figure 2: Bifurcation diagram of V corresponding to the vertical and horizontal slices through the phase
diagram of Fig. 1, as computed using XPPAUT [4]. Left panel: V versus D for β = 0.8 (vertical slice).
Right panel: V versus β for D = 0.4 (horizontal slice). The solid and dashed lines denote linearly
stable and unstable branches of steady-state solutions, respectively. The two closed loops correspond to
branches of in-phase and anti-phase periodic solutions. In the left panel, the branch that bifurcates from
the steady-state near D = 1 is the in-phase synchronous branch and in the right panel, the outer loop
is the anti-phase branch. The solid/open circles on these loops denote linearly stable/unstable periodic
solutions, respectively.
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strength β is increased it is the anti-phase mode that becomes unstable first. This phenomenon is also
plausible biologically, since when D and β are both small the communication between the two cells is not
very efficient, and so it is difficult to synchronize their dynamics with a common phase.

Figure 3: Full numerical solutions of the PDE-ODE system (2.1) demonstrating either in-phase or anti-
phase oscillations of the two compartments. Time increases from bottom to top and the horizontal axis
indicate the bulk region where L = 1. Left panel: in-phase oscillations for D = 1 and β = 0.7 (black dot
in Fig 1). Right panel: anti-phase oscillations for D = 0.4 and β = 0.5 (magenta open circle in Fig. 1.)
The other parameter values are the same as in the caption of Fig.1.

From Fig. 1, we also observe that when D is relatively large, only the in-phase synchronized oscillation
can occur. In the region of Fig. 1 bounded by the blue solid curve, the steady-state solution is unstable
to the in-phase mode, but it is only above the black solid curve where a stable in-phase synchronized
oscillation between the two compartments can occur. Similarly, inside the red dashed curve, the steady-
state solution is unstable to the anti-phase mode, but it is only under the magenta dashed curve where the
anti-phase mode is stable. Therefore, in the region of Fig. 1 bounded by the black and magenta curves,
stable in-phase and stable anti-phase periodic oscillations can co-exist. The determination of which mode
would result from numerical computations of the initial value problem (2.1) should depend on the initial
conditions at time t = 0.

To confirm predictions obtained from the bifurcation analysis, full time-dependent numerical solutions
of the coupled PDE-ODE system (2.1) were computed using a method of lines approach based on a second-
order spatial discretization of the bulk diffusion operator. In our computation, we picked two points in
the phase diagram in Fig. 1 indicated in the figure by the black solid dot and the magenta open circle.
For these parameter sets, full numerical solutions of the PDE-ODE system (2.1) are shown in Fig. 3
starting with the initial value C(x, 0) = 0.2, and with randomly generated initial values for Vi and Wi

for i = 0, 1 at t = 0. The plots in Fig. 3 for t large confirm the theoretical predictions of the phase
diagram by showing in-phase synchronous oscillations for D = 1 and β = 0.7 (left panel), and anti-phase
synchronous oscillations for D = 0.4 and β = 0.5 (right panel).

Finally, we remark that if we fix a point in the phase diagram where both the in-phase and anti-phase
modes are stable, it is possible to evolve to either of these two modes depending on the initial condition.
For instance, if we take β = 0.8 and D = 0.4, then both modes of oscillation are stable, as seen from
Fig. 2. For the initial values C(x, 0) = 0.5 with v1 = 0.3, w1 = 0.2, v2 = 0.4, and w2 = 0.2 at t = 0,
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our numerical simulation of the PDE-ODE system (2.1) in Fig. 4 shows in-phase oscillations after some
transient period. For the same initial values, but changing v1 and w1 to v1 = 5 and w1 = 10, we obtain
anti-phase oscillations.

3.2 The Winding Number Computation

Figure 4: Full numerical solutions of the PDE-ODE system (2.1) for D = 0.4 and β = 0.8, showing
different long-time results depending on the initial conditions. Left panel: for the initial values C(x, 0) =
0.5, v1 = 0.3, w1 = 0.2, v2 = 0.4, and w2 = 0.2, there are in-phase oscillations. Right panel: with the
same initial values, but with v1 = 5 and w1 = 10, we get anti-phase oscillations.

In Appendix A, we use the winding number criterion of complex analysis to determine the number of
roots of F(λ) = 0 in Re(λ) > 0, where F(λ) is defined in (3.5). The analysis is similar to that used in
[19] to analyze the stability of localized pulse solutions to reaction-diffusion systems.

Let ΓI+ denote the positive imaginary axis λ = iλI with λI > 0 traversed in the downwards direction.

Then, as shown in Appendix A, the change in the argument of F(λ) on ΓI+ , denoted by [argF ]
∣

∣

∣

ΓI+

,

can only be an integer number of 2π, so that [argF ]
∣

∣

∣

ΓI+

= 2mπ for m = 0,±1,±2, . . . . As derived in

Appendix A, the number N of zeroes of F(λ) = 0 in Re(λ) > 0 is

N = 2m+ P , P =

{

2 , when tr(Je) > 0 ,

0 , when tr(Je) < 0 .
(3.6)

Although we cannot, in general, determine m analytically, it is readily calculated numerically from
(3.5a). To illustrate the numerical computation of the winding number, we consider (2.1) with the linear
coupling (3.1) for the parameter value D = 1 and β = 0.7, corresponding to the marked black dot in
Fig. 1. The other parameter values for (2.1) are given in the caption of Fig. 1. For this parameter set we
calculate that tr(Je) > 0 so that P = 2 from (3.6). In the right panel of Fig. 5, we plot the path of F(iλI)
in the (FR,FI) parameter plane for both the in-phase synchronous mode (solid curve) and the anti-phase
synchronous mode (dashed curve). For the anti-phase mode we observe that as λI decreases from a very
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large initial value, F(λ) wraps around the origin once in clockwise direction, so that [argF ]|ΓI+
= −2π.

Therefore, since m = −1, we get N = 0 from (3.6). In contrast, for the in-phase synchronous mode we
observe from Fig. 5 that [argF ]|ΓI+

= 0, so that m = 0 and N = 2 from (3.6). These winding number
computations show that, at this parameter set, the steady-state solution is unstable only to in-phase
synchronous perturbations.
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Figure 5: Left panel: G+(λ), G−(λ), and H(λ), as defined in (3.7), are plotted on λ > 0 real for D = 1
and β = 0.7, with the other parameters as in the caption of Fig. 1. There is no intersection G±(λ) and
H(λ), which shows that F(λ) has no real roots λ for either the in-phase and anti-phase modes. Right
panel: FI(λI) = Im(F(iλI)) is plotted versus FR(λI) = Re(F(iλI)) for both the in-phase and anti-phase
modes as λI is decreased from 1000 to 0. The open circle represents the starting point at λI = 1000.
For the anti-phase mode (dashed curve), we have m = −1 in (3.6) since the trajectory wraps around the
origin once in the clockwise direction. For the in-phase mode (solid curve), the plot shows that m = 0 in
(3.6).

To determine the location of the two unstable eigenvalues for the in-phase synchronous mode when
D = 1 and β = 0.7 we seek roots of F(λ) on the positive real axis λ > 0. To do so, we conveniently
rewrite F as

F(λ) =
H(λ)−G±(λ)

p±(λ) det(Je − λI)
, where H(λ) ≡ det(Je − λI) , G±(λ) ≡ p±(λ)(g

e
W − λ) . (3.7)

In the left panel of Fig. 5 we plot H(λ) and G±(λ) on λ > 0 real for D = 1 and β = 0.7. This plot
shows that there are no intersections between H(λ) and G±(λ). Since, consequently, there is no real
positive root to F(λ) = 0, we conclude that the initial instability associated with the in-phase-mode is an
in-phase synchronous oscillatory instability of the compartmental dynamics. A bifurcation diagram (not
shown) similar to that in Fig. 2 predicts that this initial instability leads to a large-scale stable in-phase
synchronous oscillation. The full numerical results of the PDE-ODE system (2.1) shown in the left panel
of Fig. 3, as computed using a method of lines approach, confirms this prediction of a stable synchronous
oscillation.

We remark that this strategy of computing the winding number, and then using (3.6) to determine
N , was used for mapping out the regions in the phase diagram of Fig. 1 characterizing the linear stability
properties of the steady-state solution to either in-phase or anti-phase perturbations.
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4 A Periodic Chain of Active Units Coupled by Bulk Diffusion

In this section we extend the analysis in §3 to the case where m identical compartments, or cells, are
evenly-spaced, with spacing 2L, on a 1-D ring. These cells are then coupled by a bulk-diffusion field.
A schematic diagram of this periodic arrangement of active cells is shown in the left panel of Fig. 6.
Equivalently, we consider a 1-D domain on the interval [−L, (2m − 1)L], with cells located at 2jL for
j = 0, . . . ,m− 1, with the imposition of periodic boundary conditions for the bulk diffusion field at the
endpoints. A schematic plot of four such cells is shown in the right panel of Fig. 6.

-L 0 7L2L 4L 6L

-L L0

(A) (B)

(C)

Figure 6: Left panel: Schematic diagram of four identical cells on a ring structure. The green solid dots
represent cells. Top right panel: Schematic diagram of four identical cells on the domain [−L, 7L] with
periodic boundary conditions at the two ends. Bottom right panel: schematic of one cell on [−L,L].

With the same notation used in §2, we model the system with m identical cells on a 1-D structure as
follows. Firstly, the bulk diffusion process is modeled by

Ct = DCxx − kC , t > 0 , x ∈ (−L, (2m− 1)L) , with x 6= 2jL , j = 0, . . . ,m− 1 ,

C(−L, t) = C(2mL− L, t) , Cx(−L, t) = Cx(2mL− L, t) .
(4.1a)

Inside each cell, we suppose that there are n locally interacting chemicals species. As shown in Appendix
B, the local dynamics in each cell, with the linear coupling to the bulk diffusion field, is governed by

duj

dt
= F (uj) + e1

[κ

2

(

C(2jL+, t) + C(2jL−, t)
)

− κu1j

]

, j = 0, . . . ,m− 1 , (4.1b)

where uj = (u1j , u2j , . . . , unj)
T denotes the n species inside the j-th cell, e1 ≡ (1, 0, . . . , 0)T , with u1j

being the first chemical species inside the jth cell. Moreover, F is the common local reaction kinetics, since
the cells are assumed to be identical. Here C(2jL−, t) and C(2jL+, t) represent the bulk concentration
field at the left and right boundary of the j-th cell. As shown in Appendix B, the boundary conditions
for the bulk concentration C at the cell boundaries, where j = 0, . . . ,m− 1, are

DCx(2jL
+, t) = κ

(

C(2jL+, t)− u1j(t)
)

, DCx(2jL
−, t) = κ

(

u1j(t)− C(2jL−, t)
)

, (4.1c)

where κ > 0 is the common cell permeability parameter.
We remark that in our formulation, we have only assumed that C(x, t) is piecewise continuous on

the ring, and so in general C(2jL+, t) 6= C(2jL−, t). An alternative, but simpler formulation, would be
to impose that C is continuous on the ring, and that there is a jump in the flux DCx across each cell.
Although we do not pursue this simpler problem here, the linear stability analysis associated with this
problem is discussed briefly in Appendix C.
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4.1 The Steady-State Solution

We first calculate the symmetric steady-state solution of (4.1). For this steady-state, the bulk concentra-
tion is symmetric with respect to the midline of every two cells, and the local cell variables are the same
for each cell. Although there might be other asymmetric steady-state solutions for the full system (4.1) of
m coupled cells, we focus only on the symmetric steady-state solution and its linear stability properties.

To construct the symmetric steady-state, we need only consider the domain [−L,L], as shown in
Fig. 6, with a cell located at x = 0 and with periodic boundary conditions at x = ±L. We denote this
steady-state solution by Ce(x) and the corresponding local steady-state cell variables as u

e. Then the
symmetric steady-state solution for C in the full system (4.1) is constructed by a simple period extension
of this basic solution. Hence, focusing on the interval [−L,L], the steady-state solution Ce(x) satisfies

Ce
xx =

k

D
Ce , x ∈ (−L, 0) ∪ (0, L) ; Ce(−L) = Ce(L) , Ce

x(−L) = Ce
x(L) ,

DCe
x(0

+) = κ
(

Ce(0+)− ue
1

)

, DCe
x(0

−) = κ
(

ue
1 − Ce(0−)

)

.
(4.2)

The steady-state solution for the compartmental variable u
e satisfies

F (ue) + e1

[κ

2

(

Ce(0+) + Ce(0−)
)

− κue
1

]

= 0 . (4.3)

On each subinterval, we can calculate the steady state solution Ce(x) separately as

Ce(x) =

{

A cosh((x− L)ω) , 0 < x < L ,

A cosh((x+ L)ω) , −L < x < 0 ,
(4.4a)

where A and ω are given by

ω ≡

√

k

D
, A =

κue
1

κ cosh(Lω) +Dω sinh(Lω)
. (4.4b)

As expected this steady-state is continuous across the cells.
For the special case where the local cell variable u has two components u = (V,W )T with local

reaction term F = (f, g)T , where f and g are the Sel’kov kinetics given in (2.1c), we can use (4.3) and
(4.4) to explicitly identify a unique steady-state V e and W e as

V e =
µ(κ+Dω tanh(Lω))

κ+ (1 + κ)Dω tanh(Lω)
, W e =

µ

α + (V e)2
. (4.4c)

4.2 The Linear Stability Analysis

Next, we study the linear stability of the steady-state solution (4.4) for the case of Sel’kov kinetics. By
introducing the perturbation (3.3) into (4.1) and linearizing, we obtain the eigenvalue problem

η′′ =
(k + λ)

D
η , x ∈ (−L, (2m− 1)L) , with x 6= 2jL , j = 0, . . . ,m− 1 ,

Dη′(2jL+) = κ(η(2jL+)− ϕ) , Dη′(2jL−) = κ(ϕ− η(2jL−)) , j = 0, . . . ,m− 1 ,
(4.5a)
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subject to the periodic boundary conditions

η(−L) = η(2mL− L) , η′(−L) = η′(2mL− L) . (4.5b)

Upon linearizing the reaction kinetics we have that

λϕ = f e
V ϕ+ f e

Wφ− κϕ+
κ

2

(

η(0+) + η(0−)
)

, λφ = geV ϕ+ geWφ , (4.5c)

where f e
V , f

e
W , geV , and geW are evaluated at the steady-state (4.4c).

Instead of considering (4.5a) with periodic boundary condition (4.5b), we make use of Floquet theory
and consider (4.5a) on the fundamental interval [−L,L] with the Floquet boundary conditions

η(L) = zη(−L) , η′(L) = zη′(−L) . (4.6)

The solution can then be extended to the interval [L, 3L] by defining η(x) ≡ zη(x − 2L) for x ∈ [L, 3L]
and using translation invariance. Since the m cells are identical, it is clear that η(x) satisfies (4.5a). By
iterating this process, we construct the solution of (4.5a) on the whole domain [−L, (2m− 1)L] provided
that η(2mL− L) = zmη(−L). Therefore, we obtain that z must be one of the m-th roots of unity

z ≡ e2πil/m , where l = 0, . . . ,m− 1 . (4.7)

In this way we have recovered the periodic solution to (4.5a) on [−L, (2m− 1)L].
Next, we solve (4.5a) on [−L,L] subject to the Floquet boundary conditions (4.6). The solution to

(4.5a) and (4.6) is

η(x) =

{

[zA cosh((x− L)Ωλ) + zB sinh((x− L)Ωλ)]ϕ , 0 < x < L ,

[A cosh((x+ L)Ωλ) + B sinh((x+ L)Ωλ)]ϕ , −L < x < 0 ,
(4.8)

where A, B, and Ωλ are defined by

A ≡
κ(z + 1)/z

2DΩλ sinh(LΩλ) + 2κ cosh(LΩλ)
, B ≡

κ(z − 1)/z

2DΩλ cosh(LΩλ) + 2κ sinh(LΩλ)
, Ωλ ≡

√

k + λ

D
,

(4.9)
and where we choose the principal branch of Ωλ if λ is complex. From this solution we then calculate

η(0+) + η(0−) = A(z + 1) cosh(ΩλL) +B(1− z) sinh(ΩλL) . (4.10)

Upon substituting these expressions into (4.5c), we obtain a homogeneous linear system for ϕ and φ given
by

(f e
V +∆λ)ϕ+ f e

Wφ = λϕ , geV ϕ+ geWφ− λφ = 0 ,

∆λ ≡
κ

2
[A(1 + z) cosh(ΩλL) + B(1− z) sinh(ΩλL)]− κ .

(4.11)

By writing (4.11) in matrix form, and then using (4.9) together with (4.7) for z, we readily derive, after
some algebra, that the the discrete eigenvalues λ satisfy the transcendental equation F(λ) = 0, where

F(λ) ≡
1

∆λ

+
geW − λ

det(Je − λI)
, (4.12a)
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and where for each possible mode l of instability, with l = 0, . . . ,m− 1, we have

∆λ ≡
κ2ΩλD [Re(zl)− cosh (2ΩλL)]− κΩ2

λD
2 sinh (2ΩλL)

(Ω2
λD

2 + κ2) sinh (2ΩλL) + 2κDΩλ cosh (2ΩλL)
, Re(zl) = cos

(

2πl

m

)

. (4.12b)

Here Je is the Jacobian of the reaction kinetics, as defined in (3.5a), evaluated at the steady-state (4.4).
Our goal below is to determine Hopf bifurcation thresholds for which F(±iλI) = 0 in (4.12a), for

some λI > 0. Such pure imaginary eigenvalues depend on Re(z) through ∆λ, as defined in (4.12b). To
examine the possible modes of instability, we observe that if zl is one of the m-th roots of unity, then

zl = z̄m−l , l = 1, . . . , ⌊
m

2
⌋ , (4.13)

where the floor function ⌊x⌋ is defined as the largest integer not greater than x. Therefore, if m is
odd, there are (m+ 1)/2 different values of Re(z), and thus (m+ 1)/2 different possible modes of linear
instability. Alternatively, if m is even, there are m

2
+ 1 different possible modes of linear instability. The

eigenvalue of multiplicity one corresponds to z = 1 (and also z = −1 if m is even). The remaining
eigenvalues always have multiplicity two. In other words, the eigenvalue corresponding to zl is also an
eigenvalue for z = zm−l. Therefore, if we find a Hopf bifurcation point for z 6= ±1, then there are always
two possible spatial modes of oscillation for that specific pair of purely imaginary eigenvalues. Finally,
to determine the predicted spatial pattern of any Hopf bifurcation point λ = iλI , we observe that at the
midpoint between the cells the perturbation Re(eλtη [(2j − 1)L)] to the bulk diffusion field C(x, t) is

Re
(

eiλIη [(2j − 1)L]
)

= cos

(

λIt+
2πlj

m

)

, j = 0, . . . ,m . (4.14)

4.3 Hopf Bifurcation Boundaries, Global Branches and Numerics

Next, we use (4.12) to compute the Hopf bifurcation boundaries for the different possible modes of
instability in the D versus κ parameter plane. We remark that the choice l = 0 in (4.12) corresponds
to in-phase synchronous perturbations across the cells, whereas the ⌊m

2
⌋ other eigenvalues correspond to

the various anti-phase modes across the m cells. For m = 3, and for one particular parameter set for the
Sel’kov model (2.1c), in Fig. 7 we plot the Hopf bifurcation thresholds in the D versus κ plane.

Next, for the m = 3 cell problem with κ = 1, we use XPPAUT [4] to compute the global bifurcation
diagram, as a function of D, for the in-phase synchronous periodic solution branch, which bifurcates from
the symmetric steady-state solution in (4.4) at the two distinct values of D shown in the left panel of
Fig. 7. The computations, done by first discretizing (4.1), are displayed in the left panel of Fig. 8. From
this figure we observe that for larger values of D the in-phase synchronous periodic solution branch is
linearly stable, but it then destabilizes as D is decreased towards the lower Hopf bifurcation threshold.

To verify the linear stability properties of the steady-state solution for the l = 0 and l = 1, 2 modes
off of the Hopf bifurcation boundaries, we can use a similar winding number criterion for F(λ), defined in
(4.12), as was developed in §3.2. With the same notation as in §3.2, the number N of unstable eigenvalues
of the linearization of the symmetric steady-state for the periodic cell problem is

N =
1

π
[argF ]

∣

∣

∣

ΓI+

+ P , P =

{

2 , when tr(Je) > 0 ,

0 , when tr(Je) < 0 .
(4.15)
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Figure 7: Left: Phase diagram showing Hopf bifurcation boundaries for the case of three (m = 3) cells
in the D versus κ plane for k = 1, L = 1, and where the Sel’kov parameters in (2.1c) are ǫ = 0.15, µ = 2
and α = 0.9. The black curves corresponds to l = 0 and the red curves corresponds to l = 1, 2. The black
and red curves almost coincide on the lower boundary. In the region bounded by the two black and two
red curves the symmetric steady-state is linearly unstable to the l = 0 and l = 1, 2 modes, respectively.
Right: Same as the left panel, but with a larger range of D for the vertical axis. For these parameter
values we observe that the region of instability is unbounded in the D versus κ plane.
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Figure 8: Left: Global bifurcation diagram with m = 3 cells on the domain [−1, 5] for κ = 1, with
the other parameters as in the caption of Fig. 7. The solid and dashed lines denote linearly stable and
unstable branches of steady-state solutions, respectively. The closed loop is the global branch of in-
phase synchronous periodic solutions. The upper Hopf bifurcation value D ≈ 0.54299 is for the l = 0
in-phase mode. The solid/open circles on this loop denotes a linearly stable/unstable periodic solution,
respectively. The red dot at D ≈ 0.48482 corresponds to the Hopf bifurcation point for the degenerate
l = 1, 2 mode. Right panel: Plot of F(iλI) as λI decreases from 1000 to 0 with D = 0.5. The blue curve
corresponds to l = 0, and the magenta curve is for l = 1, 2. The inner panel shows the curves near the
origin. The trace and determinant of Je are trJe = 0.4879 and det Je = 0.4474, so that P = 2 in (4.15).
We obtain N = 2 unstable eigenvalues for l = 0, and N = 0 for l = 1, 2 from (4.15).
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For κ = 1 and D = 0.5, a numerical computation of the winding number shown in the right panel of

Fig. 8 yields [argF ]
∣

∣

∣

ΓI+

= 0 for l = 0 and [argF ]
∣

∣

∣

ΓI+

= −2π for l = 1, 2. Therefore, N = 2 for l = 0 and

N = 0 for l = 1, 2. These results agree with those predicted from the phase diagram in the left panel of
Fig. 7, since it is only the in-phase l = 0 mode that is within the region of instability.

Figure 9: Full numerical results computed from (4.1) with D = 0.5 (upper row) and D = 0.2 (lower
row). Other parameters are the same as in Fig. 7 with κ = 1. The initial conditions for D = 0.5 are
V0 = [0.5, 1.5, 0.5], W0 = [1, 1, 1], and C0(x) = 1. For D = 0.2 the initial conditions are V0 = [0.5, 1.5, 0.5],
W0 = [1, 1, 1], and C0(x) = 1 if x > 0, C0(x) = sin(x) + 1 if x < 0. The V1, V2 and V3 curves are in
blue, green and red respectively. For D = 0.5 there are stable in-phase synchronous oscillations, whereas
for D = 0.2 stable phase-shifted synchronous oscillations occur. The phase shift among V1, V2 and V3, is
consistent with the mode l = 2 in the linear stability analysis (4.14). The right panel in each row is a
contour plot of C(x, t).

Finally, to confirm predictions obtained from the linear stability analysis and the global bifurcation
diagram, full time-dependent numerical solutions of the coupled PDE-ODE system (4.1) were computed
for two values of D when κ = 1 by using a method of lines approach based on a second-order spatial
discretization for the bulk diffusion. In the upper row in Fig. 9 for D = 0.5 we observe, as expected, a
stable in-phase synchronous periodic solution. In the lower row of Fig. 9 where D = 0.2, the full numerical
simulations show a stable asynchronous oscillation where the dynamics in the cells are phase-shifted. The
phase-shifting observed in the lower row of Fig. 9 is consistent with the l = 2 mode (with m = 3) in the
result (4.14) from the linear stability analysis, in that the bulk diffusion field at the midpoint of the cells
and the cell dynamics V1, V2, V3 have the form cos(λIt), cos(λIt+ 4π/3), and cos(λIt+ 8π/3).

4.4 Large D Analysis for the Hopf Bifurcation Boundaries

In this subsection, we examine analytically some qualitative aspects of the region in the D versus κ phase
diagram shown in Fig. 7 where the symmetric steady-state is linearly unstable. In particular, we will
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study the large D behavior of the Hopf bifurcation boundaries in this plane. From this analysis we will
also formulate a simple criterion that can be used to predict whether the lobe of instability in the D
versus κ plane is bounded in D for other domain lengths L and bulk degradation parameter k. For the
choice L = k = 1 the instability regions were unbounded as D → ∞ (see the right panel of Fig. 7).

Firstly, we determine the limiting behavior of F(λ) in (4.12) asD → ∞. Upon using ΩλD sinh (2ΩλL) ∼
2Ω2

λLD = 2(k + λ)L and cosh (2ΩλL) ∼ 1, we obtain from (4.12b) that

lim
D→∞

∆λ = ∆λ,∞ ≡
κ2(Re(zl)− 1)− 2κL(k + λ)

2L(k + λ) + 2κ
. (4.16)

Therefore, F(λ) in (4.12a) has the following limiting form as D → ∞:

lim
D→∞

F(λ) ≡ F∞(λ) ≡
1

∆λ,∞

+
geW − λ

det(Je − λI)
. (4.17)

In addition, for D → ∞, we can also find an approximate expression for the steady state V e from (4.4c),
which is needed to calculate the terms in (4.17). By using Dω tanh(ωL) ∼ Dω2L ∼ kL, we obtain from
(4.4c), that for D → ∞,

lim
D→∞

V e = V e
∞

≡
µ(κ+ Lk)

κ+ (1 + κ)kL
, lim

D→∞

W e = W e
∞

≡
µ

α + (V e
∞
)2

. (4.18)

We observe from (4.16), (4.17) and (4.18), that upon setting F∞(λ) = 0, and rearranging the resulting
expression, we obtain a cubic equation in λ of the form

λ3 + λ2p1 + λp2 + p3 = 0 , (4.19a)

where we have identify p1, p2 and p3 by

p1 ≡
a

2L
+ κ− tr(Je) , p2 ≡ det(Je)− κgeW −

(a tr(Je) + b)

2L
, p3 ≡

(a det(Je) + bgeW )

2L
, (4.19b)

and where we have defined a and b by

a ≡ 2(κ+ kL) , b ≡ κ2(Re(zl)− 1)− 2Lκk . (4.19c)

Next, we simplify (4.19b) for the Sel’kov kinetics (2.1c), for which

det(Je) = ǫ
(

α + (V e
∞
)2
)

= −geW > 0 , tr(Je) = 2V e
∞
W e

∞
− 1− det(Je) . (4.20)

By substituting (4.20) into (4.19b), we readily calculate that

p1 ≡ κ

(

1 +
1

L

)

+ k + 1 + det(Je)−
2µV e

∞
(

α + (V e
∞
)2
) ,

p2 ≡

(

1 + κ

(

1 +
1

L

)

+ k

)

det(Je) +
ξ

2L
−

2(κ+ kL)µV e
∞

L
(

α + (V e
∞
)2
) ,

p3 ≡
ξ

2L
det(Je) , ξ ≡ a− b = 2kL (1 + κ) + 2κ+ κ2 (1− Re(zl)) > 0 .

(4.21)
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Figure 10: Plot of p1p2 − p3 versus κ for l = 0 (black) and l = 1 (red) for a ring of m = 3 cells. The
blue horizontal line is the threshold p1p2 = p3. Any intersections of the black (red) curve with the blue
line yields the bifurcation points for κ for l = 0 (l = 1). Left panel: the parameter values as given in
Fig. 7. Between the two bifurcation points, the black (red) curve lies below the threshold p1p2 = p3, and
so by the Routh-Hurwitz criterion there are unstable eigenvalues. Numerically we verify p1 > 0. Right
panel: same parameters except that now the bulk decay is smaller at k = 0.3. There are now no Hopf
bifurcation values of κ in the D → ∞ regime.

For the Sel’kov model with ǫ = 0.15, µ = 2, and α = 0.9, we now use the cubic (4.19a) with coefficients
(4.21) to calculate the the limiting Hopf bifurcation values of κ, valid as D → ∞, when k = 1 and L = 1.
By the Routh-Hurwitz criterion, a necessary and sufficient condition for all of the roots of (4.19a) to
satisfy Re(λ) < 0 is that the following three inequalities hold:

p1 > 0 , p3 > 0 , p1p2 > p3 . (4.22)

From (4.21), we have p3 > 0 for any parameter set. Moreover, the Hopf bifurcation boundary satisfies

p1p2 = p3 . (4.23)

provided that p1 > 0 and p3 > 0.
Our numerical computations, from enforcing (4.23) for m = 3, predict that there is a Hopf bifurcation

for D ≫ 1 when

l = 0 , κ ≈ 0.1313 and 0.6564 ; l = 1 , κ ≈ 0.1407 and 0.3633 . (4.24)

This is shown in Fig. 10. In contrast, from the phase diagram of D versus κ, as seen in the right panel
of Fig. 7, we obtain for D = 100 that the Hopf bifurcation values for κ are

l = 0 , κ ≈ 0.1314 and 0.6579 ; l = 1 , κ ≈ 0.1405 and 0.3665 , (4.25)

which are remarkably close to the values calculated in (4.24) from the D → ∞ theory.
Finally, to obtain a bounded lobe of instability in the D versus κ plane, rather than the unbounded

region as D → ∞ shown in Fig 7, all that is needed is to seek conditions on the domain length L and

19



bulk parameter k such that the Routh-Hurwitz stability condition (4.22) holds for all κ. This can be
achieved by decreasing either L or k. We remark that if we decrease either the domain length L or bulk
decay parameter k, then the black and red curves in Fig. 10 move up, and so there no longer any Hopf
bifurcation points for the D → ∞ regime. An example of this is shown in the right panel of Fig. 10 for
the same parameters as in the left panel of Fig 10 except that now k = 0.3. In this case, the instability
lobe in the phase diagram of D versus κ would be bounded in D for both the l = 0 and l = 1, 2 modes.

5 Nonlinear Coupling Between Compartments and Bulk

In §3 we considered the case where there is a linear coupling between the compartment and the bulk.
Such a linear coupling term shifts the steady-state of the original ODE system from Ve = µ to a new
value that depends on the coupling strength β, which ultimately yields bifurcating branches of periodic
solutions through a Hopf bifurcation along the steady-state solution branch. In this section we briefly
examine an alternative scenario for the creation of compartmental-bulk oscillations. More specifically,
we will study a particular nonlinear coupling between the compartments and the bulk that possesses the
same stable steady-state as that of the uncoupled ODE system in the compartment, but that still has
the effect of generating compartment-bulk oscillations. In this model, the nonlinear coupling leads to the
creation of branches of periodic solutions exhibiting saddle-node behavior, which are disconnected from
the steady-state solution branch.

To illustrate such a possibility, we choose the coupling term P (C(2Li, t), V ), for i = 0, 1, as

P (C(2Li, t), V ) = h(C(2Li, t))q(V (t)) ,

h(C(2Li, t)) =
C(2Li, t)(C(2Li, t)− c0)

Kc + C(2Li, t)2
, q(V ) =

V (V − µ)

Lv + V 2
, i = 0, 1 ,

(5.1)

where Lv > 0, Kc > 0, and where we have defined c0 by

c0 = γµ , γ ≡
κ

κ+Dω tanh(ωL)
, ω ≡

√

k/D . (5.2)

As in §3 we will determine the symmetric steady-state solution to (2.1) with (5.1) and analyze its
linear stability. Upon solving the time-independent problem for (2.1) on the domain [0, L], with no-flux
boundary condition for C at x = L, we readily obtain that

Ce(x) = C0
e

cosh(ω(L− x))

cosh(ωL)
, C0

e =
κVe

κ+Dω tanh(ωL)
, We =

µ

α + V 2
e

, (5.3)

where Ve satisfies the following fifth order polynomial:

(Ve − µ)Q(Ve) = 0 , Q(Ve) ≡ V 4
e − βV 3

e + V 2
e

(

Kc

γ2
+ Lv + βµ

)

+
KcLv

γ2
. (5.4)

Here γ and ω are defined in (5.2). We observe that with the nonlinear coupling function (5.1), the steady-
state solution of the uncoupled ODE compartmental dynamics is still a steady-state of the coupled ODE
system. Specifically, we have the uncoupled steady-state

Ve = µ , We =
µ

α + µ2
, C0

e = c0 , (5.5)
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which corresponds to setting β = 0 in (3.2). In addition, there can be at most four other steady-state
solutions, corresponding to the roots of Q(Ve) = 0 in (5.4). However, since Q(µ) > 0, none of these
additional steady-state solution branches bifurcate from the uncoupled steady-state branch (5.5).

To examine the stability of the steady-state (5.5), we introduce the same perturbation as in (3.3).
Upon linearizing (2.1), we obtain, after some algebra, that the associated eigenvalue λ satisfies

λ2 − λ(geW + f e
V + β(P e

V + δP e
C)) + (geWf e

V − geV f
e
W + βgeW (P e

V + δP e
C)) = 0,

where

δ ≡
κ

κ+DΩλ tanh(ΩλL)
, (in-phase) , or δ ≡

κ

κ+DΩλ coth(ΩλL)
, (anti-phase) .

We observe that with the special choice (5.1) of nonlinear coupling P (C(0, t), V ), we have P e
C = 0 and

P e
V = 0, so that the characteristic equation for λ becomes

λ2 − λ(geW + f e
V ) + (geWf e

V − geV f
e
W ) = 0 ,

which is the same as that for the uncoupled problem. Since we assumed that the uncoupled problem has
stable dynamics, we have Re(λ) < 0. Thus, our linear stability analysis predicts that the steady-state
(5.5) can never be destabilized by the nonlinear coupling (5.1).

To determine whether, nevertheless, there can be any compartment-bulk oscillations, we used XP-
PAUT [4] to compute global bifurcation diagrams after first spatially discretizing (2.1) with the coupling
(5.1). In Fig. 11 we show two typical bifurcation diagrams of the compartmental variable V . In the left
panel of Fig. 11 we plot V versus the coupling strength β for the fixed diffusivity D = 0.1 showing the
stable steady-state solution and the branch of in-phase synchronous periodic oscillations. There is also a
branch of anti-phase periodic solutions (not shown), that essentially overlaps the in-phase branch. This
overlap occurs since for D = 0.1, the bulk diffusion field decays rather quickly away from x = 0 and
x = 2L, which leads to a rather weak coupling between the two compartments. The key feature from the
left panel of Fig. 11 is that there is some parameter regime in β, with D = 0.1, where stable in-phase syn-
chronous time-periodic solutions co-exist with the stable steady-state solution (5.5). This phenomenon
cannot be revealed from a local linear stability analysis along the solution branch (5.5). For β = 4, in
the right panel of Fig. 11 we plot a bifurcation diagram of V versus D showing the stable steady-states
together with disconnected branches of in-phase and anti-phase periodic solutions. Both the anti-phase
and in-phase synchronous branches have a saddle-node bifurcation point at D ≈ 0.57 and D ≈ 0.67, re-
spectively. The in-phase branches are always unstable. Stable anti-phase time-periodic solutions co-exist
with the stable steady-state solution (5.5) when D < 0.57. As a result of the saddle-node structure, seen
in the right panel of Fig. 11, it is clear that the coupled system will yield hysteretic behavior under a
slow periodic sweep in the diffusivity D.

To confirm predictions from the bifurcation diagram, we computed full numerical solutions of the
PDE-ODE system (2.1) with the nonlinear coupling (5.1) for D = 0.5 and β = 4, with the other
parameter values as given in the caption of Fig. 12. From Fig. 11, we observe for these parameter values
that the anti-phase mode is stable. The full numerical results shown in Fig. 12 confirm this prediction of
stable anti-phase oscillatory dynamics.
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Figure 11: Bifurcation diagram of the local variable V with respect to the coupling strength β and
diffusivity D for the parameter set L = 1, k = 2, κ = 3, ǫ = 0.15, µ = 0.9, α = 0.55, Kc = 1 and
Lv = 0.8. The solid/dashed line represents stable/unstable steady-state solutions of V , open/solid circle
indicate unstable/stable periodic solutions branches, respectively. The steady-state (5.5) is the solid
horizontal line. Left panel: V versus β for D = 0.1. The periodic solution branches shown correspond
only to the in-phase oscillations. Stable in-phase synchronous oscillations and stable steady-states will
co-exist only for some range of β. Right panel: V versus D for β = 4. The periodic solution branch that
is unstable, with a saddle-node point at D ≈ 0.67, is the in-phase branch. The other periodic solution
branch, with a saddle-node point at D ≈ 0.57 represents anti-phase oscillations. This plot shows that
in-phase oscillations are unstable for β = 4, but that stable anti-phase oscillations and stable steady-state
solutions will co-exist in some range of D when β = 4.

5.1 Compartmental Dynamics Neglecting Bulk Diffusion

As shown above, a local stability analysis around the steady-state (5.5) does not provide any insight into
the occurrence of oscillatory behavior of the coupled PDE-ODE system (2.1) with coupling (5.1). In this
subsection, we consider an ODE model in the compartment, where we have neglected the bulk diffusion
process, and simply set P (C, V ) = q(V ) in (5.1). The resulting ODE model is written as

dV

dt
= f0(V,W )− V + βq(V ) ,

dW

dt
= ǫ(µ− f0(V,W )) ,

f0(V,W ) ≡ αW +WV 2 , q(V ) ≡
V (V − µ)

Lv + V 2
.

(5.6)

A typical bifurcation diagram of this ODE system, computed numerically, is shown in Fig. 13. From
this figure we observe that there are three types of critical points; three Hopf bifurcation (HB) points,
the saddle node (SN) point, and the transcritcal point (IS) where two steady-state branches intersect.

To determine the location of these points we first determine the steady-states of (5.6), which satisfy

(Ve − µ)(V 2
e − βVe + Lv) = 0 . (5.7)
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Figure 12: Numerical simulation of the coupled PDE-ODE system (2.1) with the nonlinear coupling (5.1)
for D = 0.5, β = 4, and L = 1. The other parameter values are the same as in the caption of Fig. 11. The
initial conditions are C(x, 0) = 2, v1 = 1, w1 = 0.3, v2 = 0.2, and w2 = 0.3. Stable anti-phase oscillations
for C(x, t) are observed.
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Figure 13: Bifurcation diagram of the ODE system (5.6) versus β for the parameter set ǫ = 0.15, µ = 0.4,
α = 0.55, and Lv = 0.8. The solid/dashed line represents stable/unstable steady-state solutions of V .
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Therefore, Ve = µ is a steady-state, and there are two additional steady-state solutions given by

V ±

e =
β

2
±

√

(

β

2

)2

− Lv , (5.8)

when Lv < β2/4. At the SN point, we have V +
e = V −

e , which gives

βSN = 2
√

Lv , and V ±

e =
√

Lv . (5.9)

For the parameter values in Fig. 13 we get βSN ≈ 1.789.
At the IS point, since one of V ±

e must equal µ, we obtain that

β

2
±

√

(

β

2

)2

− Lv = µ , (5.10)

which yields β = µ+Lv/µ. Since, µ−β/2 = (µ2 − Lv)(2µ), we conclude that V
−

e = µ when Lv > µ2, and
V +
e = µ when Lv < µ2. The parameter set in the caption of Fig. 13 corresponds to this first possibility.

The IS point occurs at βIS = (0.42 + 0.8) /0.4 = 2.4.
To determine the HB points, we calculate the trace and the determinant of the Jacobian matrix Je

associated with (5.6) as

tr(Je) = f e
0V − 1 + βq′(Ve)− ǫf e

0W , det(Je) = −ǫf e
0W (β q′(Ve)− 1) .

The Hopf bifurcation occurs when tr(Je) = 0 and det(Je) > 0, which gives

βq′(Ve) = 1 + ǫf e
0W − f e

0V , (5.11a)

provided that

det(Je) = −ǫf e
0W (ǫf e

0W − f e
0V ) = ǫ

[

2Veµ− ǫ
(

α + V 2
e

)2
]

> 0 . (5.11b)

To determine the HB point off of the Ve = µ = 0.4 steady-state branch in Fig. 13, we set Ve = µ in (5.11b)
to calculate that det(Je) ≈ 0.0367 > 0. By using (5.6) for q(V ) to calculate q′(µ), we obtain from (5.11a)
that the HB point βHB is

βHB =
(Lv + µ2)

µ(α + µ2)

[

α− µ2 + ǫ(α + µ2)2
]

. (5.12)

For the parameter set of Fig. 13 this yields βHB ≈ 1.574. The other two HB points in Fig. 13, corresponding
to bifurcations from the V ±

e steady-states, are also readily calculated from (5.11). We find that the Hopf
bifurcation on the v+ branch is at βHB ≈ 1.8641 with det(Je) ≈ 0.0554 > 0, while the Hopf bifurcation
on the v− branch occurs at βHB ≈ 2.9884 with det(Je) ≈ 0.0265 > 0.

We conclude that the bifurcation diagram of the ODE system (5.6) does share only a few of the
characteristics observed in the bifurcation diagram of Fig. 11 for the fully coupled compartmental-bulk
problem (2.1) with (5.1). For both the ODE model and the fully coupled PDE-ODE model, new branches
of steady-state solutions, other than the base-state Ve = µ, are possible. However, for the fully coupled
problem, the branches of periodic solutions are isolated in the sense that they do not arise from bifurca-
tions off of the steady-state solution branches.
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6 Discussion

On a one-dimensional spatial domain, we have introduced and analyzed a PDE-ODE model that couples
two dynamically active compartments, separated spatially by a distance 2L, through a linear bulk diffusion
field. For this relatively new paradigm for diffusive coupling, we have used linear stability theory and
numerical bifurcation software to show that bulk diffusion can trigger a stable in-phase synchronous
oscillatory instability in the temporal dynamics associated with the two active compartments. We have
also extended the basic two-compartment analysis to determine Hopf bifurcation thresholds for a periodic
chain of dynamically active units that are linearly coupled to a bulk diffusion field. Although, for
concreteness, we have used a simple Sel’kov dynamics for the reaction-kinetics in the two compartments,
the mechanism through which oscillatory dynamics occur will be similar for other kinetics.

A biologically relevant direction that warrants further investigation is to introduce different, more
detailed, models for the coupling strength between the compartment and the bulk. As we have shown
for our linearly coupled model in §3, stable synchronized oscillations can occur only for some range of
the coupling strength β and diffusivity D. It would be interesting to analyze triggered oscillations that
result when the compartment-bulk coupling strength β varies dynamically in time, or is coupled to some
slow dynamics, so as to create periodic bursts of synchronous oscillatory behavior, followed by intervals
of quiescent behavior, in the two compartments. Such bursting and triggered dynamics have been well-
studied in a purely ODE context (cf. [1], [2], [11], see also the reference therein). A related, but rather
challenging direction, would be to investigate the possibility of synchronized oscillations when β is allowed
to switch stochastically in time between two constant states, representing an ON or OFF state that are
either inside or outside the parameter region for oscillations shown in Fig. 1, respectively. Such stochastic
switching behavior is a characteristic feature of channels in biological membranes. The resulting model is
a stochastic hybrid system that consists of both continuous PDE-ODE dynamics, punctuated by discrete
stochastic events. A mathematical analysis of a class of related stochastic hybrid system, whereby the
boundary condition for a heat equation on a finite domain switches randomly between Dirichlet and
Neumann, is analyzed in [13].

Finally, it would be interesting to extend our analysis to quorum-sensing problems in multiple spatial
dimensions, such as in the case study [17], whereby reaction-kinetics occur within spatially localized
compartments and where a diffusing signalling molecule mediates a communication between the spatially
segregated compartments. Some work in this direction is given in [10].
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A The Winding Number Analysis

In this appendix we use the argument principle of complex analysis to determine an expression for the
number N of roots of F(λ) = 0 in Re(λ) > 0 of the spectral plane, where F(λ) is defined in (3.5).

25



To do so, we calculate the winding number of F(λ) over the contour consisting of the imaginary axis
−iR ≤ Imλ ≤ iR, decomposed as ΓI+ = iλI and ΓI

−

= −iλI where 0 < λI < R, together with the
semi-circle |λ| = R, with | arg λ| ≤ π/2, which we denote by ΓR. Assuming that there are no roots of
F(λ) = 0 on the imaginary axis, we use the argument principle to determine N as

N =
1

2π

(

lim
R→∞

[argF ]ΓR
+ 2 lim

R→∞

[argF ]ΓI+

)

+ P , (A.1)

where P is the number of poles of F(λ) in Re(λ) > 0. Here [argF ]Γ denotes the change in the argument
of F(λ) over the contour Γ oriented in the counterclockwise direction. In deriving (A.1), we have used
F(λ) = F(λ̄) to obtain the relation lim

R→∞

[argF ]ΓI
−

= lim
R→∞

[argF ]ΓI+
.

To determine P , we first observe from (3.5) that the choice of the principal branch of the square root
for Ωλ ensures that 1/p±(λ) is analytic in Re(λ) > 0. Therefore, P is determined by the number of zeros
of the quadratic det(Je − λI) = λ2 − tr(Je)λ + det(Je) in Re(λ) > 0. By using the specific forms of the
nonlinearities f(V,W ) and g(V,W ) in (2.1c), we calculate det(Je) = ǫ(α + V 2

e ) > 0. Therefore, in terms
of the trace of Je, denoted by tr(Je), we have P = 2 if tr(Je) > 0 and P = 0 if tr(Je) < 0.

Next, we determine the change in the argument of F(λ) over ΓR as R → +∞. Since det(Je − λI) is

a quadratic function of λ and 1/p±(λ) ∼ β−1 +O(Ω
−1/2
λ ) as |λ| → +∞ in Re(λ) > 0, we estimate from

(3.5a) and (3.5b) that, for either the in-phase or anti-phase modes,

F(λ) ∼
1

β
+

κ

DΩλβ
+O

(

1

λ

)

, as |λ| = R → +∞ , (A.2)

where | arg λ| ≤ π/2. Hence, we have lim
R→∞

[argF ]ΓR
= 0, so that (A.1) becomes

N =
1

π
lim
R→∞

[argF ]ΓI+
+ P , P =

{

2 , when tr(Je) > 0 ,

0 , when tr(Je) < 0 .
(A.3)

In this way, the problem of determining N is reduced to the simpler problem of calculating [argF ]ΓI+

where ΓI+ is traversed in the downwards direction. On ΓI+ , we let λ = iλI for 0 < λI < ∞, and decompose
F(iλI) in (3.5a) into real and imaginary parts as F(iλI) = FR(λI) + iFI(λI). As λI decreases from +∞
to 0, we use (3.5a) to determine how many times F(iλI) wraps around the origin in the (FR,FI) plane.
By using (3.5b) to calculate the asymptotics of p± as λI → +∞, we conclude that FR → 1/β > 0 and
FI → 0 as λI → +∞. This shows that argF(iλI) → 0 as λI → ∞. In contrast, as λI → 0, we further
calculate from (3.5a) and (3.5b) that

F(0) =
1

p±(0)
−

geW
det(Je)

, where
1

p±(0)
=

{

1
β
+ κ

βDω tanh(ωL)
> 0 ,

1
β
+ κ

βDω coth(ωL)
> 0 ,

(A.4)

and ω ≡
√

k/D. Then, from the specific form of g(V,W ) in (2.1c), we get that geW = −ǫ(α + V 2
e ) < 0.

Upon recalling that det(Je) = ǫ(α + V 2
e ) > 0, we conclude from (A.4) that F(0) = [p±(0)]

−1 + 1 > 0.
This indicates that as we traverse ΓI+ , the path of F(iλI) both starts and ends on the positive real

axis of the (FR,FI) plane. It follows that the change in the argument of F(λ) on ΓI+ can only be an

integer number of 2π, so that [argF ]
∣

∣

∣

ΓI+

= 2mπ for m = 0,±1,±2, . . . . Consequently, (A.3) yields (3.6).
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B Formulation of the PDE-ODE System for a Periodic Chain

In this appendix we will derive (4.1b) for the local dynamics for the case of one cell on [−L,L], which
occupies a narrow interval [−ǫ, ǫ] centered at the origin with 0 < ǫ ≪ 1. Assume that the signaling
molecule diffuses out of the cell at a certain rate. The local chemical species inside the cell, denoted by
u = (u1, u2, . . . , un)

T , are assumed to satisfy the following system

ut = ǫDuxx + F (u) , −ǫ < x < ǫ , t > 0 ,

Dux(ǫ, t) = e1G1(C(ǫ, t), u1(ǫ, t)) , Dux(−ǫ, t) = e1G2(C(−ǫ, t), u1(−ǫ, t)) ,
(B.1)

where ǫ ≪ 1 and e1 = (1, 0, . . . , 0)T . Here for simplicity we assume that all local chemicals share the
same diffusivity ǫD ≪ 1, with D = O(1), which is asymptotically small as compared to the reaction rate
of the kinetics.

We now derive a reduced model from (B.1) in the limit ǫ ≪ 1 to obtain the approximate behavior of
this system. To do so, we first introduce the local variable y = ǫ−1x, so that in terms of the y variable
(B.1) becomes

ut = ǫ−1Duyy + F (u) , −1 < y < 1 , t > 0 ,

Duy(1, t) = ǫe1G1(C(ǫ, t), u1(1, t)) , Duy(−1, t) = ǫe1G2(C(−ǫ, t), u1(−1, t)) .
(B.2)

We then expand the local specifies u as

u = u
0 + ǫu1 + · · · . (B.3)

Substituting this expansion into (B.2), and linearizing, we obtain to leading order that u0 satisfies

u
0
yy = 0 , −1 < y < 1 ; u

0
y(±1, t) = 0 . (B.4)

The solution to (B.4), which is independent of the spatial variable y, is u0 = u
0(t). We then proceed to

the next order to determine the equation that u0 satisfies. At the next order, u1 satisfies

Du
1
yy = u

0
t − F (u0) , −1 < y < 1 ,

Du
1
y(1, t) = e1G1(C(ǫ, t), u0

1(t)) , Du
1
y(−1, t) = e1G2(C(−ǫ, t), u0

1(t)) ,
(B.5)

where e1 = (1, 0, . . . , 0)T , and u0
1 denotes the first component of u0. For this O(ǫ) system, we invoke the

divergence theorem to obtain that
∫ 1

−1
Du

1
yy dy =

∫ 1

−1
(u0

t − F (u0)) dy. Upon evaluating this expression,
and using (B.5), we get

Du
1
y(1, t)−Du

1
y(−1, t) = e1

(

G1(C(ǫ, t), u0
1(t))−G2(C(−ǫ, t), u0

1(t))
)

= 2(u0
t − F (u0)) . (B.6)

Upon rewriting this equation we obtain a system of ODEs for u0 given by

u
0
t = F (u0) +

e1

2

[

G1(C(ǫ, t), u0
1(t))−G2(C(−ǫ, t), u0

1(t))
]

. (B.7)

Now letting the width of the cell approach 0, or equivalently ǫ → 0, we obtain the limiting system

u
0
t = F (u0) +

e1

2

[

G1(C(0+, t), u0
1(t))−G2(C(0−, t), u0

1(t))
]

. (B.8)
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If we consider the case of linear coupling for which G1 and G2 have the forms

G1(C(0+, t), u0
1) = κ(C(0+, t)− u0

1) , G2(C(0−, t), u0
1) = −κ(C(0−, t)− u0

1) , (B.9)

then (B.8) becomes

u
0
t = F (u0) + e1

[κ

2
(C(0+, t) + C(0−, t))− κu0

1

]

. (B.10)

This specifies ODEs for the time evolution of the leading order term for the local species inside the cell,
and in this way approximately characterizing the local dynamics. In §4, we drop the superscript in u

0

and use (B.10) to describe the local dynamics inside each cell.

C An Alternative PDE-ODE Formulation for a Periodic Chain

In this appendix we briefly discuss the implications of an alternative formulation of the periodic cell
problem (4.1). In this simpler formulation, we assume that C(x, t) is continuous on the ring, but has
jumps in the flux DCx across each cell. This alternative formulation is

Ct = DCxx − kC , t > 0 , x ∈ (−L, (2m− 1)L) , with x 6= 2jL , j = 0, . . . ,m− 1 ,

C(−L, t) = C(2mL− L, t) , Cx(−L, t) = Cx(2mL− L, t) ,

[DCx]
∣

∣

x=2jL
= 2κ [C(2jL, t)− u1j ] , j = 1, . . . ,m ,

(C.1a)

where [ux]
∣

∣

x0
≡ ux(x

+
0 )− ux(x

−

0 ). This bulk field is then coupled to the internal cells dynamics by

duj

dt
= F (uj) + e1 [κC(2jL, t)− κu1j] , j = 0, . . . ,m− 1 . (C.1b)

For (C.1), we again obtain the symmetric steady-state solution as in §4.1. However, in contrast to
the analysis in §4.2, in the linear stability analysis for (C.1) the perturbations in the bulk diffuson field
must now be continuous across each cell. From an analysis similar to that in §4.2, we readily derive for
the Sel’kov kinetics that the eigenvalue parameter λ satisfies (4.12a), where in place of (4.12b), we have

∆λ ≡ −
1

κ
+

1

DΩλ

sinh (2ΩλL)

Re(z)− cosh (2ΩλL)
, Re(zl) = cos

(

2πl

m

)

, (C.2)

where Ωλ is defined in (4.9). As a remark if we set zl = 1 (in-phase) and zl = −1 (anti-phase) in (C.2),
we can readily show that (4.12a) with (C.2) reduces, as expected, to the two-cell spectral problem (3.5)
of §3.1 for either in-phase or anti-phase modes, respectively, upon setting β = κ in (3.5).
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